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Constraint-based reasoning is applied in various scenarios such as the optimization of production 

schedules [1], product configuration [2], and recommendation [3]. Taking knowledge-based 

configuration as an example, typical tasks supported by constraint solvers (acting as configurators) 

are (1) to check the consistency of a set of variable assignments, (2) to check the feasibility of a given 

set of user requirements (regarding a configuration), and (3) to complete given partial configurations 

taking into account additional constraints such as to minimize the total price or the included set of 

components (only needed components should be included in a final configuration). 

The mentioned tasks can be easily supported by existing constraint solving techniques which can be 

regarded as typical representatives of knowledge-based Artificial Intelligence [4,7]. A more detailed 

analysis of constraint-based configuration scenarios (and constraint solving scenarios in general) 

shows a need to support further related tasks – for a related overview, we refer to Popescu et al. [6]. 

When activating a constraint solver to solve a given configuration task, it would be good to know 

which heuristics (e.g., in terms of variable and value orderings) should be applied to solve a specific 

problem. In this context, we could also be interested in a prediction of satisfiability, i.e., to predict if 

a solution exists for a specific CSP (without the need of activating the solver). Furthermore, 

specifically in interactive scenarios, it is highly relevant to predict relevant user preferences, i.e., 

being able to recommend variable value settings to a user (in situations where users are not able 

and willing to specify all of a given set of parameters). Finally, it would also be of interest to predict 

which of a potentially large set of explanations will be the most relevant ones for a user [8]. Different 

machine learning (ML) approaches can help to support these tasks [6]. 

On an abstract level, the following can be regarded as representative integration scenarios of 

constraint solving and machine learning [5,6,10]. (1) solver selection is the task of identifying an 

optimal solver (or solver parametrization) to solve a given CSP as fast as possible. In this context, the 

input for a machine learning component is meta information about previously solved CSPs (e.g., in 

terms of structural properties of the CSP, used algorithm/parametrization, and corresponding 

runtime needed to solve the problem). The output of a machine learning model is a recommended 

parametrization (solver selection) for the current CSP. (2) Similar to solver recommendation, search 

heuristics could be recommended on the basis of information about structural properties of the 

current (to be solved) CSP. (3) in some scenarios, it can also be of interest to apply a machine 

learning model to predict the satisfiability of a CSP (without activating a constraint solver). In this 

context, the input for a machine learning component would again be meta-information about 

previously solved (or unsolved) CSPs. (4) Specifically in interactive scenarios, it is highly relevant to 

predict the relevance of specific variable settings for a user. To learn user preferences, the input for a 



corresponding machine learning component is a set of existing CSP solutions, the output is a 

machine learning model that is able to predict user preferences on the basis of a given set of already 

specified user preferences – a simplified example is given in Table 1. 

session x1 x2 x3 x4 x5 

1 1 2 1 3 6 

2 2 1 3 2 2 

3 3 3 2 3 1 

current 1 2 1 2 ?-> 6 
Table 1: A simple example: the user in the current session has already defined his/her preferences regarding the variables 
x1-x4 and would like to have a recommended setting for the variable x5. The nearest neighbour user session (in terms of 
similar preferences) is session 1. Consequently, a recommendation for the current user regarding the setting of variable x5 
could be x5=6. This is a simplified example of a memory-based recommendation approach which does not take into account 
domain-specific constraints, i.e., such a recommendation could result in an inconsistency. Alternative approaches do not 
directly recommend variable settings but focus on recommending, for example, variable value orderings. For more related 
information, we refer to the overview of Popescu et al. [6].  

Basically, machine learning (ML) models can be (1) memory-based, where predictions/classifications 

are determined, for example, on the basis of parametrizations chosen for problems with similar 

meta-properties (e.g., k-nearest neighbour based ML models) and (2) model-based, where 

predictions/classifications are determined with ML models following the idea of dimensionality 

reduction, i.e., the set of features used for predicting/classifying is a reduced one compared to the 

number of “input” parameter settings (e.g., matrix factorization and neural network based ML 

models). Typical metrics for evaluating the performance of a machine learning model take into 

account prediction errors (e.g., mean absolute error - MAE) and classification errors (e.g., accuracy) 

[9]. The major research challenge in this interdisciplinary field is to find ways to exploit synergy 

effects, for example, on the levels of (1) integrating machine learning models into constraint learning 

and constraint reasoning as well as (2) extending existing machine learning approaches in such a way 

that domain knowledge defined in terms of constraints can be easily integrated / taken into account 

in ML model building processes. 
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