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Abstract Until now, we have focused on group recommendation techniques for
choice scenarios, related to explicitly-defined items. However, further choice sce-
narios exist that differ in the way alternatives are represented and recommendations
are determined. We introduce a categorization of these scenarios and discuss knowl-
edge representation and group recommendation aspects on the basis of examples.

7.1 Introduction

Until now, we have considered choice scenarios in which a group recommender se-
lects items from a set of explicitly defined (enumerated) items. Examples thereof are
the selection of a restaurant for a dinner and the selection of a holiday destination.
In this chapter, we analyze scenarios that go beyond the ranking and selection of ex-
plicitly defined items (alternatives). We first characterize these scenarios with regard
to the aspects of (1) the inclusion of constraints (constraints allow the definition of
restrictions regarding the combination of choice alternatives) and (2) the approach
to define alternatives (alternatives can be either represented explicitly or in terms
of parameters). Thereafter, we discuss these scenarios in more detail on the basis
of examples. There are hierarchical relationships between some scenarios: release
planning, triage, resource balancing, and sequencing can be considered as subtypes
of configuration differing in the type of variables and constraints used. We also dif-
ferentiate between (1) basic choice problems (ranking, packaging, parametrization,
configuration, release planning, resource balancing, sequencing, and triage) and
(2) methods for getting people’s input concerning choice problems (voting, ques-
tionnaires, and parametrization). The choice scenarios introduced in this chapter
are the following (see Figure 7.1).

Ranking. The choice scenarios discussed in the previous sections can be regarded
as ranking since the overall goal is to derive a ranked list of items as a recommenda-
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Fig. 7.1: Choice scenarios categorized with regard to (1) constraint inclusion and
(2) the representation of alternatives (as parameters or items).

tion for a group. Ranking scenarios typically do not include constraints and choice
alternatives are represented in the form of a list of explicitly defined items, for ex-
ample, restaurants or holiday destinations.

Packaging. Package recommendation goes beyond basic ranking [21, 22, 26].
The overall goal is to recommend combinations of items while taking into account
constraints that restrict the way in which different items can be combined. For ex-
ample, in holiday trip planning, a package recommendation problem is to find a
set of destinations for the group that takes into account global constraints such as
upper price limit and maximum total distance between the destinations, but also
constraints related to individual items. For example, specific destinations should be
excluded, or either one or the other should be visited but not both. Items in pack-
aging problems are specified explicitly, for example, a list of museums and a list of
restaurants. Another example of packaging is a group decision regarding the com-
position of a Christmas party menu. Decision alternatives are represented by lists
of menu items where each item is associated with one of the categories starter,
main dish, and dessert. Constraints can be specified, for example, according to the
maximum number of menu items and the upper price limit of a menu.

Parametrization. Parametrization decisions are related to detailed aspects of an
item – related alternatives are represented as parameter values. In parametrization,
no restrictions exist between the parameter values. In the context of group decision
making, an example is the parametrization of an already selected travel destination



or the parametrization of intended properties of an already selected hotel. Examples
of parameters of a travel destination are number of days to be spent at the destination
and time of the year. Parameters describing intended properties of hotels are the
availability of a beauty farm, whirlpool, fitness studio, and massage service [14].

Configuration. Configuration [2, 6, 24] is one of the most successful applications
of Artificial Intelligence techniques. In terms of knowledge representation, config-
uration scenarios are similar to parametrization, i.e., decision alternatives are rep-
resented in terms of parameters. In contrast to parametrization, configuration tasks
include a set of constraints that restrict the combination of individual parameter
values. Examples thereof are the group-based configuration of smarthome installa-
tions and the group-based configuration of a car (e.g., a new company car) [4, 15].
Further examples of group-based configuration are release planning [12], resource
balancing, sequencing, and triage. Because of their wide-spread application, these
scenarios will be discussed in separate subsections.

Release Planning. Both, in terms of knowledge representation and inclusion of
constraints, a release planning task is a specific type of configuration task [19]. In
Software Engineering, release planning refers to the task of assigning a set of re-
quirements to one of a defined set of releases. This scenario is usually a group deci-
sion scenario, since stakeholder groups engaged in a software project have to make
release-related decisions. An example of a related constraint is: since the overall
effort is too high, requirement x and requirement y must not be implemented in the
same release.

Triage. Similar to release planning, triage can be considered a specific type of
configuration task. Triage decisions can occur in domains such as medical decision
making and Software Engineering. The overall goal of the underlying decision is to
determine a tripartition1 of a given set of alternatives. In early requirements engi-
neering [19], triage can be applied to figure out (1) requirements that are essential
for a company and must be implemented immediately, (2) requirements that can be
implemented if the resources are available, and (3) unimportant requirements with
no need for implementation in the near future. As opposed to this, the focus of re-
lease planning is to decide a.o. about the time of implementation. Constraints are
similar to those occurring in the context of release planning. Further examples of
triage-based decisions are selection and assignment of students to open research
projects of a research group (students with high potential should be preferred, stu-
dents with a low probability of successfully completing their tasks should be as-
signed to standard projects but not research projects, and all other students should
receive a research project position if possible), funding decisions (distribute the
available budget between high-potential projects while taking into account an upper
funding limit, do not fund low-potential projects, and fund ’in-between’ projects if
additional money is available), idea management (focus on high-potential ideas, fil-
ter out low-potential ideas, and take into account ideas ’in-between’ if the needed
resources are available), and product line scoping [23] (include the most relevant

1 We limit our discussions to scenarios with three partitions.



product features, features with potentials for new markets if possible, and filter out
low-potential ones).

Resource Balancing. The goal of resource balancing is to assign consumers to
resources in such a way that a given set of constraints is satisfied. In this context,
consumers and resources can represent humans as well as physical equipment or
software. The assignment of resources to consumers can be represented in terms
of parameters. Resource balancing often includes a set of constraints, for example,
each student should be assigned exactly one paper and paper assignments should be
equally distributed. Thus, resource balancing can also be interpreted as a specific
kind of configuration task. In configuration scenarios, resource balancing is often
included as a subtask, for example, to balance power supply and consumption [6].

Sequencing. Sometimes, alternatives have to be arranged in a sequence. For ex-
ample, when planning a trip around the island of Iceland, the sequence of venues
(when to visit which destination) has to be clear from the outset since hotel reser-
vations have to be arranged correspondingly. Items in sequencing tasks are often
represented in terms of parameters. Constraints are related to user preferences (e.g.,
three waterfalls should not be visited directly one after another) and further restric-
tions (e.g., the distance between two destinations in a sequence should be below 100
kilometers and the overall length of the round trip should be minimized).

Polls and Questionnaires. Polls and questionnaires are basic means to better un-
derstand the opinions of a group or a community. Thus, both can be considered as
basic decision support mechanisms. In poll scenarios, the group giving the feedback
is in many cases not directly engaged in a decision making process. Polls are defined
in terms of a question (parameter) and possible answers. No constraints are defined
with regard to the choice alternatives. Questionnaires are a concept similar to polls
with the difference that more than one question is typically posed and new questions
are sometimes selected depending on answers that have already been provided.

Voting. Compared to questionnaires and polls, voting has a strong decision as-
pect, since a group or a community decides on which alternative(s) should be chosen
[16]. This takes place on the basis of a predefined process. The underlying options
are represented in an explicit fashion, like presidency candidates or candidate soccer
players for the ’goal of the month’. In voting, there are no constraints regarding the
alternatives.2

Due to the high diversity of existing choice scenarios, we do not claim com-
pleteness. The scenarios presented must be seen as examples, i.e., different variants
thereof exist. In the following, we will discuss knowledge representations of the
choice scenarios shown in Figure 7.1, and sketch approaches to include group rec-
ommendation techniques.

2 For a discussion of the potential impacts of voting strategies we refer to [16].



7.2 Ranking

In basic ranking scenarios [7], choice alternatives are enumerated and no con-
straints are applied to the alternatives. A group’s task is to identify a ranking and
then select one item (e.g., in the context of selecting a restaurant for dinner or a
logo for a new product) or a couple of items (e.g., when selecting the n best confer-
ence papers or selecting the n best proposals submitted to a funding organization).
Alternatives do not necessarily need to be specified completely before the decision
process starts, for example, in idea competitions and open innovation scenarios, al-
ternatives can be added during the decision process. A simple example of a ranking
scenario is depicted in Table 7.1. Each item ti received one ranking per group mem-
ber. A score is associated with each rank, for example, rank 1 receives 3 points, rank
2 receives 2 points, etc. The item with the highest Borda Count (BRC) (see Chapter
2) scoring is recommended (in our case item t4 which is indicated with

√
in Table

7.1).3

Item ranking (score) BRC ranking
u1 u2 u3

t1 4 (0) 4 (0) 4 (0) 0 4
t2 2 (2) 3 (1) 2 (2) 5 2
t3 3 (1) 2 (2) 3 (1) 4 3
t4 1 (3) 1 (3) 1 (3) 9 1

√

Table 7.1: A basic group-based ranking scenario. Group members ui provide ranks
for items ti ∈ I (alternatively, rankings can be derived by a recommender – see Chap-
ter 2). Thereafter, an aggregation function such as Borda Count (BRC) can be used
to derive a corresponding ranking for the group. The

√
symbol indicates the recom-

mended item.

7.3 Packaging

In a packaging scenario (see Table 7.2) [21, 22], each item ti j is associated with
a specific item type i. Choice alternatives are explicitly defined per item type and
constraints related to the alternatives have to be taken into account. A group has to
select items of different item types and compose these into a corresponding package.
An example of a constraint that is defined in such a scenario is: the number of
selected items per item type must be exactly 1 (see constraint c1 in Table 7.2). Table
7.2 depicts an example of a group-based packaging scenario. Each item receives
a ranking per group member and the item with the highest Borda Count (BRC)

3 The aggregation functions used in this and other scenarios are considered as convenient, however,
other alternatives might exist.



score within a specific item type i is the group recommendation for item type i. The
recommended package in our example is {t11, t21, t31}. In some scenarios, more than
one item per item type is requested or less items than defined types are allowed to
be included in a package recommendation. In more complex scenarios, constraints
are also specified at the individual item level. An example of such a constraint is
an incompatibility between the items t22 and t33, i.e., these items must not be part
of the same package. In the case of such constraints, solution search in packaging
scenarios can be implemented on the basis of conjunctive (database) queries.

item ranking (score)
item type 1 item type 2 item type 3

t11 t12 t13 t21 t22 t23 t31 t32 t33
u1 1 (3) 2 (2) 3 (1) 2 (2) 1 (3) 3 (1) 1 (3) 2 (2) 3 (1)
u2 2 (2) 3 (1) 1 (3) 1 (3) 2 (2) 3 (1) 1 (3) 2 (2) 3 (1)
u3 1 (3) 2 (2) 3 (1) 1 (3) 2 (2) 3 (1) 3 (1) 2 (2) 1 (3)
BRC 8 5 5 8 7 3 7 6 5
type-wise ranking 1

√
2 2 1

√
2 3 1

√
2 3

c1 : ∀i : #proposeditems(type i) = 1

Table 7.2: A group-based packaging scenario. Users provide ranks for items ti j ( jth

item of type i). Thereafter, an aggregation function such as Borda Count (BRC) can
be used for deriving a proposed package (in our case, {t11, t21, t31}). The

√
symbol

indicates the recommended items part of the package.

7.4 Parametrization

The alternatives are defined in terms of parameters and there are no constraints re-
lated to the alternatives. In such a scenario, a group’s task is to select one value per
parameter. An example of a group-based parametrization scenario is presented in
Table 7.3. Each group member specifies his/her preferences with regard to the dif-
ferent parameters and then the values that were selected in the majority of the cases
are considered as candidates for the group recommendation. The recommendation
(parametrization) in our example is {par1 = a, par2 = 1, par3 = 2}.

7.5 Configuration

In group-based configuration scenarios [4], the alternatives are defined by param-
eters and corresponding domain definitions. In most configuration scenarios, con-
straints restrict possible combinations of parameter values. Similar to parametriza-
tion scenarios, a group’s task is to select one value per parameter such that the set of



parameter preferences MAJ
u1 u2 u3

par1(a,b,c) a a c a
√

par2(1,2,3) 1 1 1 1
√

par3(1,2) 2 2 1 2
√

Table 7.3: Group-based parametrization. Users define preferences with regard to the
parameters pari. Thereafter, an aggregation function such as Majority Voting (MAJ)
can be used for recommending a parametrization (in our case, {par1 = a, par2 =
1, par3 = 2}). The

√
symbol indicates recommended parameter values.

parameter value assignments is consistent with the defined constraints [6]. An ab-
stract example of a group-based configuration scenario is shown in Table 7.4. Each
group member specifies his/her preferences with regard to the values of the parame-
ters {par1, ..., par4}. An example constraint is c1 : par3 = u→ par4 = 1. Table 7.4
also depicts the solution candidates, i.e., complete sets of parameter assignments
that take into account the defined constraints. These configurations include trade-
offs in terms of neglecting some of the user preferences due to the fact that the union
of all user preferences would be inconsistent [10]. In our example shown in Table
7.4, least misery (LMS) is applied to evaluate the configuration candidates (to de-
termine a recommendation). Misery in this context is defined as the number of times
the preferences of an individual user are not taken into account by a configuration.
In contrast to rating-based approaches, the higher the value the lower the quality of
the corresponding configuration.

parameter preferences configuration (solution) misery LMS
u1 u2 u3 id par1 par2 par3 par4 u1 u2 u3

par1(a,b,c) a a c 1 a 1 u 1 1 1 1 1
√

par2(1,2) 1 1 1 2 c 1 u 1 2 2 0 2
par3(u,v) u u u 3 b 1 u 1 2 2 1 2
par4(1,2) 2 2 1

c1 : par3 = u→ par4 = 1,c2 : par2 6= 2,c3 : par3 6= v

Table 7.4: A group-based configuration scenario. Users ui specify their preferences
in terms of parameter values. Constraints ci specify the restrictions, a configura-
tion must take into account. Thereafter, an aggregation function such as Least Mis-
ery (LMS) can be used for deriving a recommended configuration (in our case,
{par1 = a, par2 = 1, par3 = u, par4 = 1}). The

√
symbol indicates the configura-

tion parameter values recommended to the group.

Solving Configuration Tasks. Configuration tasks can be solved using constraint
solvers [6, 25]. Thus, constraint solvers take over the role of determining candidate
recommendations. These solvers generate solutions (candidate recommendations)
consistent with the defined set of constraints. Due to the combinatorial explosion,
it is often not possible to generate all possible solutions and then to filter out the



best ones by using an aggregation function [3]. In order to deal with such situations,
search heuristics that help to increase the probability of finding solutions that are
optimal with regard to a selected aggregation function must be integrated into the
constraint solver. A more lightweight integration of aggregation functions can be
achieved with majority voting (MAJ). The votes of group members can be applied
to derive preferences [1]. For example, for par1 we can derive a preference ordering
a � c � b indicating that a is preferred by a majority of group members (over c
and b) and that c is preferred over b. Such preferences can be directly encoded as
variable (domain) orderings into a constraint solver [20].4

7.6 Release Planning

Release planning is a configuration task [19] where the alternatives (possible as-
signments of requirements to releases) are defined as parameters and correspond-
ing domain definitions. In most release planning scenarios, constraints restrict the
possible assignments of requirements to releases. A group’s task is to find one value
per parameter (each requirement needs to be assigned to a release) in such a way
that all assignments are consistent with the defined constraints. An example of a
group-based release planning task is shown in Table 7.5.

parameter preferences release plan misery LMS
u1 u2 u3 id req1 req2 req3 req4 u1 u2 u3

req1(1..2) 1 1 2 1 1 1 2 2 1 0 4 4
req2(1..2) 1 1 2 2 1 2 1 2 1 2 2 2

√

req3(1..2) 1 2 1 3 2 1 1 2 1 2 2 2
√

req4(1..2) 2 2 1 4 2 2 1 1 3 4 0 4

c1 : req3 ≤ req4, c2 : ∀i : numreqreli ≤ 2

Table 7.5: A group-based release planning scenario. Users can specify their pref-
erences in terms of assignments of requirements (reqi) to releases. Additionally,
constraints ci specify properties a release plan must take into account. Thereafter,
an aggregation function such as Least Misery (LMS) can be used for deriving a pro-
posed release plan (in our case, for example, release plan 2). The

√
symbol indicates

recommended release plans.

Each group member specifies his/her preferences with regard to the assignment
of requirements to releases. Example constraints are c1 : req3 ≤ req4, c2 : ∀i :
numreqreli ≤ 2 which denote the fact that (1) requirement req3 must not be im-
plemented after requirement req4 and (2) no more than two requirements should
be assigned to the same release. Similar to the aforementioned configuration sce-
nario, the preferences of individual users are aggregated using Least Misery (LMS).

4 For example, choco-solver.org.



In this context, LMS denotes the maximum number of times the preferences of an
individual user are neglected by a release plan. For example, release plan 1 ignores
the preferences of user u3 four times which is the maximum for release plan 1. Both
release plan 2 and 3 have the lowest LMS. Consequently, release plans 2 and 3 can
be recommended. Techniques that can be used to determine individual release plans
are the same as those discussed in the context of solving configuration tasks.

7.7 Triage

Triage can be regarded as a configuration task. In the context of software require-
ments engineering, alternative requirements have to be assigned to one of the three
triage categories: accept (a) = requirement must be implemented, maybe accept (m)
= requirement can be implemented if resources are available, and reject (r) require-
ment will not be implemented (now). As in release planning, constraints can restrict
the assignment of requirements to the three categories. Table 7.6 includes an exam-
ple of a simple triage task.

parameter preferences triage misery LMS
u1 u2 u3 id req1 req2 req3 req4 u1 u2 u3

req1(a,m,r) a r a 1 a m a m 2 2 2 2
√

req2(a,m,r) r m r 2 a r a r 0 4 0 4
req3(a,m,r) a r a 3 m a m a 4 4 4 4
req4(a,m,r) r m r 4 r a r a 4 2 4 4

c1 : req1 = req3,c2 : req2 = req4
c3 : a(req1)+a(req2)+a(req3)+a(req4) = 2

Table 7.6: Group-based triage. Users specify their preferences by categorizing re-
quirements (reqi) into a (accept), m (maybe accept), and r (reject). Constraints c1
and c2 specify dependencies between requirements, c3 specifies that two require-
ments have to be accepted (a). An aggregation function such as Least Misery (LMS)
can be used for deriving a triage solution (in our case, triage 1). The

√
symbol in-

dicates the triage recommended to the group.

A group’s task is to assign one category to each requirement in such a way that
all assignments are consistent with the defined constraints. In this example, the pro-
posed triage follows the recommendation determined by Least Misery (LMS). Tech-
niques that can be used to determine individual triage solutions are the same as those
discussed in the context of solving configuration tasks.



7.8 Resource Balancing

A resource balancing task is defined on the basis of parameters riu j indicating the
assignment of a consumer (user) u j to a resource ri (riu j = 1↔ consumer (user) j is
assigned to resource i). In the example given in Table 7.7, each consumer (user) u j
provided a preference evaluation (on a scale 1..5) with regard to all potential assign-
ments riu j.5 The outcome is a resource assignment that indicates which consumer
is assigned to which resource(s). In our example, resource balancing is interpreted
in such a way that each resource should be assigned to nearly the same number of
consumers and each consumer should be assigned to exactly one resource (see con-
straints c1–c4 in Table 7.7; nri are parameters/variables representing the quantity of
users assigned to resource i).

parameter preference resource assignment (rating) LMS
rating (riu j) id r1u1 r1u2 r1u3 r2u1 r2u2 r2u3

r1u1(0,1) 5 1 1 (5) 1 (5) 0 0 0 1 (2) 2
r1u2(0,1) 5 2 1 (5) 0 1 (4) 0 1 (1) 0 1
r1u3(0,1) 4 3 1 (5) 0 0 0 1 (1) 1 (2) 1
r2u1(0,1) 4 4 0 1 (5) 1 (4) 1 (4) 0 0 4

√

r2u2(0,1) 1 5 0 1 (5) 0 1 (4) 0 1 (2) 2
r2u3(0,1) 2 6 0 0 1 (4) 1 (4) 1 (1) 0 1

c1 : nr1 = r1u1 + r1u2 + r1u3
c2 : nr2 = r2u1 + r2u2 + r2u3

c3 : |nr1−nr2|<= 1
c4 : r1u1 + r2u1 = 1∧ r1u2 + r2u2 = 1∧ r1u3 + r2u3 = 1

Table 7.7: Group-based resource balancing. Users specify their preferences with re-
gard to resource assignments in terms of ratings. Constraints ci specify properties a
resource assignment must take into account. Least misery (LMS) denotes the low-
est user-specific evaluation of a resource assignment. The

√
symbol indicates the

recommended assignment (in our case, assignment 4).

Choice scenarios similar to resource balancing in terms of the used knowledge
representation are task assignment (e.g., a set of tasks has to be assigned to the
members of a group) and production scheduling (e.g., a set of orders has to be
assigned to machines taking into account the preferences of different customers).

7.9 Sequencing

Sequencing can be regarded as a configuration task where sequential numbers have
to be assigned to items. As in configuration, constraints can restrict the assignment.

5 In order to reduce evaluation efforts, a user could specify only preferred items and the system
would assume negative evaluations for items a user did not evaluate.



Table 7.8 depicts an example of a sequencing task. A group’s task is to assign one
sequential number to each item in such a way that all assignments are consistent
with the defined constraints (in our case c1). If sequences have already been pre-
defined, sequencing can also be implemented as a ranking task where users evaluate
sequences and an aggregation function determines the recommendations. An exam-
ple thereof is shown in Table 7.9.

Different aspects of sequencing have been investigated by Masthoff [17] in the
context of selecting television items (e.g., news and commercials). In the scenar-
ios investigated until now, the primary inputs for determining recommendations are
the ratings provided by individual group members. However, as mentioned in [17],
a group member’s evaluation of an item does not only depend on his/her personal
preferences, but also on the context in which the item is shown. The evaluation of
an item also depends a.o. on a user’s mood (see also Chapter 9). For example, in
the context of TV commercials, it is often the case that viewers prefer to see sad
commercials in the middle of sad TV programs humorous commercials are pre-
ferred in humorous programs. This indicates a need for consistency, i.e., users try
to maintain a specific mood throughout a TV program [17]. Masthoff presents an
in-depth analysis of different influence factors in group decision making in the con-
text of sequencing. Particularly, different social choice functions are compared with
regard to their applicability in the domain of television item sequencing. Results of
the presented studies show that group members try to avoid individual misery and
care about fairness in group decision making. Interestingly, ratings are used in a
non-linear way, i.e., differences between extreme values are considered higher com-
pared to rating values near the average. For further related details we refer to [17].
Due to the possibility of compensating for items that are perceived suboptimal with
better ones, especially in the context of sequencing, it is usually possible to make
sure that no one is miserable.

parameter preferences sequence misery LMS
u1 u2 u3 id t1 t2 t3 u1 u2 u3

t1(1..3) 1 1 1 1 1 2 3 2 0 2 2
√

t2(1..3) 3 2 3 2 1 3 2 0 2 0 2
√

t3(1..3) 2 3 2 3 2 1 3 3 2 3 3
4 2 3 1 2 3 2 3
5 3 1 2 2 3 2 3
6 3 2 1 3 2 3 3

c1 : ∀ui : uit1 = x→ uit2 6= x∧uit3 6= x...

Table 7.8: Group-based sequencing. Users specify their preferences in terms of as-
signments of sequential numbers to items ti. Additionally, constraints ci specify
properties a sequence must take into account. Here, uit j is a parameter represent-
ing a user’s (ui) assignment of item t j to a specific sequence position. Least misery
(LMS) denotes the number of times, a user preference is neglected by a sequence.
Sequences id = 1 and id = 2 can be regarded as recommendation candidates.



sequence evaluation AVG
id t1 t2 t3 u1 u2 u3
1 1 2 3 5 4 3 4

√

2 1 3 2 3 3 5 3.67
3 2 1 3 2 3 5 3.33
4 2 3 1 3 1 1 1.67

Table 7.9: A sequencing scenario where different sequences are explicitly defined,
i.e., the choice task is ’reduced’ to a ranking scenario. In this example, sequence 1
has the highest Average (AVG) value, i.e., it will be recommended first.

7.10 Polls and Questionnaires

A poll is a kind of sampling of opinions on a specific subject which is collected
from a selected or a randomized group of persons. A micro-poll is a technical term
for a short poll that is added, for example, to a website. Polls are used in situations
where one is interested in the feedback of a group or a community with regard to a
specific topic or question. Thus, polls are used to collect feedback which can be re-
lated to a decision, though the group asked is not necessarily affected by the result.
Typical examples of such polls are ’how did you like the new version of our soft-
ware?’ or ’which version of the software do you use, the Android or the iOS-based
implementation?’. Users participating in polls can be allowed to select one or more
alternatives. A poll on the selection of the employee of the year could allow only
one voting per user whereas a poll related to the selection of the best performer of
a casting show could allow more than one vote. Systems supporting polls do not in-
clude any type of group recommendation functionality, in terms of supporting users
in their decision making process. The aggregation mechanism applied in the con-
text of polls is used to summarize the feedback of users (ADD-based aggregation)
in terms of relative percentages per alternative (e.g., number of persons who voted
for a candidate). In contrast to polls, questionnaires often consist of a collection of
questions where the answer type of the questions can be defined in a flexible fash-
ion (e.g., free text answers, multiple-choice answers, and single-choice answers). In
some cases, questionnaires are defined on the basis of decision trees that specify in
which context a question should be posed.

u1 u2 u3 feedback (ADD)
q1(1,2) 1 1 1 1 (100%)
q2(1,2,3) 2 3 2 2 (67%) 3(33%)
q3(1,2) 1 1 2 1 (67%) 2(33%)
q4(1,2,3) 1 2 3 1 (33.3%) 2(33.3%) 3(33.3%)

Table 7.10: Evaluation scheme of polls and questionnaires – persons providing feed-
back often do not participate in the related decision making process.



7.11 Voting

Voting has a structure that is similar to polls, however, there is a decision aspect in
voting since a group or a community decides on which alternative should be chosen,
i.e., there is a clear pragmatics of the decision outcome. Typical examples of the
application of voting are the player of the month (e.g., in soccer), the reporter of the
year, and the president of a country. In many cases, the goal of voting is to select
one alternative (e.g., the president), however, there are also scenarios where more
than one alternative is selected. For example, in the context of a best paper award:
if majority voting is used for determining a best paper and there is a tie (depending
on the process) multiple alternatives could be selected as best papers. In the context
of elections, the determined ranking of the alternatives has clear pragmatics. For
example, the identified person becomes the new president. Elections can be single
shot or iterative and different tie-breaking rules can be applied (an example thereof
can also be a new election). An example of a voting process is shown in Table 7.11.

u1 u2 u3 result (ADD)
a1(0,1) 1 0 1 2

√

a2(0,1) 0 1 0 1
a3(0,1) 0 0 0 0
a4(0,1) 0 0 0 0

Table 7.11: A voting process. Each user is allowed to give only one vote – a decision
is made on the basis of the ADD aggregation function.

7.12 Further Aspects of Choice Scenarios

Tie-Breaking. Rules can help in situations where there is no clear winner but a de-
cision has to be made. A tie-breaking method could be selected before the decision
making process starts. This is used in situations where all group members agree
on the method (or the method has to be accepted ’per-se’). Elections are an exam-
ple of a situation where a group (in this case, a community) has to decide, and the
method is already pre-defined. Further related examples are voting procedures in
(public) organizations and companies, for example, when selecting a new rector for
a university, selecting a new pope, or selecting the new president of the labor union.
Situations where groups try to determine the tie-breaking method ahead of time also
occur in less business-related decision processes. For example, what is the impact
(weight) of the expert jury compared to the opinion of the audience collected via
SMS votes in a TV show (in a situation where the jury ranking combined with the
ranking of the audience does not result in a clear winner). Similar situations occur
when it comes to the selection of the best paper at a conference – example resolution



strategies in this context can be a simple majority-rules vote or the average rating
the paper received from the reviewers.

Further examples of tie-breaking rules are toss a coin (useful, for example, in the
context of low-involvement items such as restaurants), least misery (useful in situ-
ations where two or more high-involvement alternatives have the same evaluation),
authority voting (if a group did not agree on a specific decision rule and accepts the
decision of a single authority), and fairness (in the context of repetitive decisions,
users who were treated less favorably in previous decisions have priority). In many
situations, a formalized and pre-defined rule for making a final decision does not
exist, but the final decision is made on the basis of an internal discussion. In the
’best paper’ scenario this means that the members of the jury simply analyze all the
given alternatives and articulate their preferences, for example, in terms of an initial
ranking. Given that every jury member has defined his/her preferences, a discussion
can be started with the overall goal of achieving consensus between the group mem-
bers. Such group decision-making requires the inclusion of forums which allow the
discussion and exchange of views regarding (dis)advantages of alternatives [18].

Multi-stage Processes. Multi-stage choice is performed if the decision making
task can be separated into multiple phases (e.g., first decide about the date of the
holidays and then decide on the location and the hotel), or the process itself may
consist of the phase of identifying a consideration set (a set of candidate items that
could potentially be chosen) and then selecting items from the identified consider-
ation set. Examples thereof are personnel selections where the relevant candidates
are pre-selected and – on the basis of the consideration set – hiring interviews are
conducted. Further related examples are idea management (e.g., the selection of a
name for a new product or the selection of topics that should be chosen for the next
project proposal), strategic planning (e.g., the definition and selection of new topics
for professorships to be announced as open positions in the upcoming years).

Process Iterations. Iterative decisions (in contrast to single-shot decisions) are
typically made in the context of high-involvement items, i.e., items with a higher
negative impact triggered by a suboptimal decision (compared to low-involvement
items). In the context of such decisions, different types of conversational recommen-
dation approaches, such as constraint-based recommendation and critiquing-based
recommendation, are useful [5]. Decisions related to high-involvement items are
typically made in an iterative fashion, i.e., before the decision is made, a couple of
iterations in terms of evaluations and discussions are performed. Examples thereof
are manifold. For instance, a family purchases a new car, a new CEO is hired for
a company, a group of students selects a new shared apartment, or a new ERP sys-
tem is purchased by a company. Gamification-based approaches are a special case
of iterative decision making, for example, Planning Poker [13] is a consensus- and
gamification-based approach to effort estimation (often used in requirements engi-
neering [11]) where group members play cards. Each member holds a full deck of
cards where each card represents a time effort ascending from, for example, 5 min-
utes to one month. After each group member has played a card (face-down), these
cards are disclosed and the estimates of individual group members are discussed.
After the discussion, each member plays another card until consensus is achieved.



Examples of single-shot decisions are the selection of a restaurant and the selection
of a movie to be watched on the weekend.

Degree of Participation. Active participation is given if the persons providing
preference feedback on the choice options are also engaged in the corresponding
choice process (see also Chapter 2). This is the case with most of the aforementioned
scenarios, i.e., decision makers are also engaged in the feedback process and provide
their preferences with regard to the given set of alternatives. The exception to the
rule are polls and questionnaires, where communities provide feedback to decision
makers but often do not actively participate in the decision making process.

7.13 Conclusions and Research Issues

In this chapter, we discussed choice scenarios that go beyond those of previous
chapters. We introduced a categorization of these scenarios along the dimensions
of knowledge representation (items vs. parameters) and the inclusion of constraints.
For a more in-depth understanding of these scenarios, we provided a couple of ex-
amples that show how to determine group recommendations. A couple of research
issues also exist in this context. For example, the overall idea of group-based con-
figuration is to engage user groups in configuration processes for complex products
and services [4]. Examples of such scenarios are the group-based configuration of
software release plans, the configuration of smart homes, and the configuration of
holiday packages. In all of these scenarios, approaches are required that support so-
lution search that takes into account the preferences of individual group members. A
specific issue is how to guide heuristic search when confronted with the preferences
of a group of users. Initial related work can be found, for example, in Polat-Erdeniz
et al. [20]. Similar aspects play a role when supporting groups in achieving consen-
sus in the case of contradicting preferences. The research issue to be solved is how
to include social choice mechanisms into preference elicitation, and corresponding
diagnosis and repair processes. Initial work on the inclusion of personalization into
diagnosis processes is presented, for example, in [8, 9].
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