
Chapter 2
Algorithms for Group Recommendation

Alexander Felfernig, Müslüm Atas, Denis Helic,
Thi Ngoc Trang Tran, Martin Stettinger, and Ralph Samerab

a Citation: Alexander Felfernig, Müslüm Atas, Denis Helic, Thi
Ngoc Trang Tran, Martin Stettinger, and Ralph Samer. Algo-
rithms for Group Recommendation, in: Group Recommender
Systems – An Introduction, Alexander Felfernig, Ludovico Bo-
ratto, Martin Stettinger, and Marko Tkalčič (eds.), Springer, pp.
27–58, ISBN: 978-3-319-75066-8, 2018.
b This is a pre-print version of the chapter published in
the book ”Group Recommender Systems: An Introduction”:
http://www.springer.com/us/book/9783319750668.

Abstract In this chapter, our aim is to show how group recommendation can be im-
plemented on the basis of recommendation paradigms for individual users. Specif-
ically, we focus on collaborative filtering, content-based filtering, constraint-based,
critiquing-based, and hybrid recommendation. Throughout this chapter, we differen-
tiate between (1) aggregated predictions and (2) aggregated models as basic strate-
gies for aggregating the preferences of individual group members.

2.1 Introduction

As discussed in Chapter 1, there are many real-world scenarios where recommen-
dations have to be made to groups. The main task in these scenarios is to generate
relevant recommendations from the preferences (evaluations) of individual group
members. As illustrated in Table 2.1, group recommendation approaches can be dif-
ferentiated with regard to the following characteristics [45, 46].

Preference Aggregation Strategy. In group recommender systems, there are two
basic aggregation strategies [35]. First, recommendations are determined for indi-
vidual group members and then aggregated into a group recommendation.1 Second,
the preferences of individual users are aggregated into a group profile which is then
used to determine a group recommendation. In this chapter, we show how both
strategies can be applied with different recommendation algorithms.

Recommendation Algorithm. The recommendation logic of group recommenders
is in many cases based on single user recommenders (collaborative filtering,
content-based filtering, constraint-based, critiquing-based, and hybrid recommenda-
tion) [22] combined with selected aggregation functions from social choice theory

1 One can also distinguish between the aggregation of items and the aggregation of evaluations
(e.g., ratings in collaborative filtering) [6, 35] – in this chapter we will provide examples of both.

27

characteristic description

Preference
Aggregation

Strategy

(1) determination of items/ratings for individual group members, thereafter
aggregation of these items/ratings to a group recommendation, or (2)
aggregation of the preferences of group members into a group profile,

thereafter determination of a recommendation for the group.
Recommendation

Algorithm
One of the recommendation algorithms (i.e., collaborative, content-based,

constraint-based, critiquing-based, and hybrid).
Preferences Known

Beforehand?
For example, in collaborative filtering, ratings are known beforehand [2].
In conversational approaches, preferences are constructed over time [36].

Immediate Item
Consumption?

Group recommenders can recommend (1) items that will be consumed in
the future (e.g., holiday destinations as a basis for a final decision taken by
(a) a responsible person or (b) a group on the basis of a discussion [34]), or

(2) items consumed immediately (e.g., songs [45]).
Active or Passive

Group?
A group is passive if it does not actively influence the construction of a

group profile [2]. Active groups negotiate the group profile [33, 50].
Number of

Recommended
Items

A group recommender can focus on the recommendation of (1) a single
item as is the case with travel destinations [33] or (2) multiple items
represented, for example, as a sequence (e.g., television items [45]).

Type of Preference
Acquisition

Preferences can be acquired by interpreting, for example, the ratings of
items or by engaging users in a preference construction process [34].

Table 2.1: Characteristics to classify group recommenders [45, 46].

[45, 52]. These functions will be discussed on the basis of examples from the travel
domain introduced in Chapter 1.

Preferences Known Beforehand. Consider the example of single-shot recommen-
dations determined on the basis of collaborative filtering. Some user preferences are
already known from previous recommendation sessions, and so do not need to be
determined in an iterative process. In contrast, conversational recommender systems
[9, 12, 20, 42, 47, 49] engage users in a dialog to elicit user preferences.

Immediate Item Consumption. On the one hand, a pragmatics of a recommenda-
tion can be that a group directly experiences the recommended items. For example,
consider songs consumed by members of a fitness studio or commercials shown on
public screens. On the other hand, recommendations are often interpreted as pro-
posals without the items being experienced immediately.

Active or Passive Group. On the one hand, group profiles can be generated au-
tomatically if the preferences of the group members are known. On the other hand,
especially when using constraint-based or critiquing-based recommenders, prefer-
ences are constructed (i.e., not known beforehand) and thus are adapted and ex-
tended within the scope of negotiation processes. The more intensively group mod-
els are discussed and negotiated, the higher the degree of group activity.

Number of Recommended Items. The output of a group recommender can be a
single item (e.g., restaurant for a dinner or a movie), but also packages (e.g., travel
packages), sequences (e.g., songs or travel plans), and even configurations (e.g.,
software release plans and cars).2

2 See Chapter 7.

Type of Preference Acquisition. Preferences can be collected implicitly (through
observation, for example, of user’s item consumption patterns) or explicitly by en-
gaging users in a preference construction process. The latter is the case especially
in conversational recommendation [9, 12, 20, 42, 47].

2.2 Preference Aggregation Strategies

Independent of the way preferences are acquired from individual group members
(see Chapter 5), a group recommendation is determined by aggregating these pref-
erences in one way or another [35]. In group recommender systems, the determi-
nation of recommendations depends on the chosen preference aggregation strategy
[2, 6, 27, 35, 37, 43, 62].

There are two aggregation strategies (see Figure 2.1): (1) aggregating recom-
mended items (or evaluations) that were generated separately for each user profile
up(ui) and (2) aggregating individual user profiles up(ui) into a group profile gp. In
the first case, the recommendation step precedes the aggregation step – item eval-
uations or items recommended to individual group members are aggregated into
a corresponding group recommendation. In the second case, the aggregation step
precedes the recommendation step – group profiles aggregated from individual user
profiles are the basis for determining a group recommendation. Following the dis-
cussions in [3, 35], we denote the first aggregation strategy as aggregated predic-
tions and the second one as aggregated models (see Figure 2.1).

Aggregated Predictions. There are two basic approaches to aggregate predictions.
First, recommendations (items) determined for individual group members can be
merged. This approach can be used if a a set of candidate solutions should be pre-
sented and the group members are in charge of selecting one out of the candidate
items. In this context, specific items which are not very appealing for some group
members are not filtered out. Group members play an important role in the deci-
sion making process, since no ranking of the individual candidate items is provided.
Second, group-member-specific predictions for candidate items are aggregated. The
outcome of this approach is a ranking of candidate items.

Aggregated Models. Instead of aggregating recommendations for individual
users, this approach constructs a group preference model (group profile) that is then
used for determining recommendations. This is especially useful in scenarios where
group members should have the opportunity to analyze, negotiate, and adapt the
preferences of the group [35]. Another advantage of applying group preference mod-
els is that the privacy concerns of users can be alleviated, since there is no specific
need to record and maintain individual user profiles.

Although studies exist that compare the predictive quality of the two basic ag-
gregation approaches (aggregated predictions and aggregated models) [2, 3, 5, 15],
more in-depth comparisons are needed that also focus on specific group properties
such as size, homogeneity (e.g., similarity between group members can have a neg-
ative impact on the decision quality), the item domain (e.g., high-involvement vs.

Fig. 2.1: Two basic aggregation strategies in group recommendation: (1) recom-
mendation based on single user profiles with a downstream aggregation of items
(or evaluations/ratings) recommended to group members/users (aggregated predic-
tions) and (2) recommendation based on aggregated models (group profiles).

low-involvement items [19]), and also the ways in which individual and group rating
behavior differs [56]. After introducing a couple of social choice based preference
aggregation functions that help to implement aggregated predictions and aggregated
models, we show how preference aggregation can be implemented in the context of
collaborative- and content-based filtering as well as constraint-based, critiquing-
based, and hybrid recommendation.

2.3 Social Choice based Preference Aggregation Functions

A major issue in all of the mentioned group recommendation scenarios is how to
adapt to the group as a whole, given information about the individual preferences of
group members [1, 45]. As there is no optimal way to aggregate recommendation
lists [1], corresponding approximations (in the following denoted as aggregation
functions) have to be used to come up with a recommendation that takes into account
’as far as possible’ the individual preferences of group members. As mentioned
in [46, 57], the aggregation functions can be categorized into majority-based (M),
consensus-based (C), and borderline (B). Table 2.2 provides an overview of different

kinds of aggregation functions taken from social choice theory3 [11, 44, 45, 58] and
their categorization into one of the three mentioned categories (M, C, and B).

aggregation strategy description recommendation

Additive Utilitarian
(ADD) [C]

sum of item-specific
evaluations

argmax
(t∈I)

(Σu∈Geval(u, t))

Approval Voting
(APP) [M]

number of item-specific
evaluations above an
approval threshold

argmax
(t∈I)

(|{u ∈ G : eval(u, t)≥ threshold}|)

Average (AVG) [C] average of item-specific
evaluations

argmax
(t∈I)

(Σu∈Geval(u,t)
|G|)

Average without
Misery (AVM) [C]

average of item-specific
evaluations (if all

evaluations are above a
defined threshold)

argmax
(t∈I:6∃u∈G|eval(u,t)≤threshold)

(Σu∈Grating(u,t)
|G|)

Borda Count (BRC)
[M]

sum of item-specific scores
derived from item ranking

argmax
(t∈I)

(Σu∈Gscore(u, t))

Copeland Rule
(COP) [M]

number wins (w) - number
losses (l) in pair-wise
evaluation comparison

argmax
(t∈I)

(|w(t, I−{t})|− |l(t, I−{t})|)

Fairness (FAI) [C]
item ranking as if

individuals (u ∈ G) choose
them one after the other

argmax
(t∈I)

(eval(u, t)) [in each iteration]

Least Misery (LMS)
[B]

minimum item-specific
evaluation

argmax
(t∈I)

(mineval(t))

Majority Voting
(MAJ) [B]

majority of evaluation
values per item

argmax
(t∈I)

(ma jorityeval(t))

Most Pleasure
(MPL) [B]

maximum item-specific
evaluation

argmax
(t∈I)

(maxeval(t))

Most Respected
Person (MRP) [B]

item-evaluations of most
respected user

argmax
(t∈I)

(eval(umrp, t))

Multiplicative
(MUL) [C]

multiplication of
item-specific evaluations

argmax
(t∈I)

(Πu∈Geval(u, t))

Plurality Voting
(PLU) [M]

item with the highest
#votes from u ∈ G

argmax
(t∈I)

(votings(t)) [in each iteration]

Table 2.2: Basic aggregation functions for group recommender systems [11, 40, 45,
46, 57] where argmax is assumed to return a recommended item. Tie breaking rules
such as random selection can be applied. M, C, and B denote the aggregation cate-
gories majority-based, consensus-based, and borderline; u represents a user (group
member), G a group, t an item, and I a set of items.

Majority-based aggregation functions (M) represent aggregation mechanisms
that focus on those items which are the most popular [44, 58]. Examples of majority-
based functions are Plurality Voting (PLU) (winner is the item with the highest
number of votes), Borda Count (BRC) (winner is the item with the best total rank-

3 Also denoted as group decision making.

ing score where each item rank4 is associated with a score 0 .. #items− 1), and
Copeland Rule (COP) (winner is the item that outperforms other items in terms of
pairwise evaluation5 comparison) (see Table 2.3). Equal evaluations in BRC are
handled as follows: in the example of Table 2.3, user u2 provided the rating 2.5 for
t2 and t3; both items receive the same score which is 0+1

2 = 0.5.
When comparing the items t1 and t2 in Table 2.3, t1 outperforms t2 two times and

looses once in terms of user evaluations (u1 : 5.0 vs. u2 : 3.0, u1 : 4.5 vs. u2 : 2.5,
and u1 : 3.5 vs. u2 : 4.0) which results in a win (”+”) 2:1. Comparing items t2 and
t3 results in a tie 1:1 which is indicated by ”0” in Table 2.3. Such an evaluation has
to be performed for each item in order to determine a winner on the basis of COP
(see the rhs of Table 2.3). A further majority-based aggregation function is Approval
Voting (APP) that recommends items with the highest number of supporting users.
In this context, support is measured in terms of the number of item evaluations above
a defined threshold.

item votes PLU evaluations (scores) BRC evaluations COP index COP
u1 u2 u3 u1 u2 u3 u1 u2 u3 t1 t2 t3

t1 1 1 0 2
√

5.0(2) 4.5(2) 3.5(1) 5
√

5.0 4.5 3.5 0 + + 2
√

t2 0 0 1 1 3.0(0) 2.5(0.5) 4.0(2) 2.5 3.0 2.5 4.0 - 0 0 -1
t3 0 0 0 0 3.5(1) 2.5(0.5) 1.5(0) 1.5 3.5 2.5 1.5 - 0 0 -1

Table 2.3: Examples of majority-based aggregation: Plurality Voting (PLU), Borda
Count (BRC), and Copeland Rule (COP, ”+” indicates a win, ”-” a loss, and ”0” a
tie).
√

denotes the item ti with the best evaluation, i.e., the recommendation.

Consensus-based functions (C)6 represent aggregation mechanisms that take into
account the preferences of all group members [58]. Examples are Additive Utili-
tarian (ADD) (winner is the item with the maximum sum of user-individual eval-
uations), Average (AVG) (winner is the item with the maximum average of the
user-individual evaluations – in the line of ADD7, the function causes problems
in the context of larger groups since the opinions of individuals count less), and
Multiplicative (MUL) (winner is the item with the maximum product of the user-
individual evaluations) (see Table 2.4). Further majority-based aggregation func-
tions are Average without Misery (AVM) that recommends the average evaluation
for items that do not have individual ratings below a defined threshold and Fairness
(FAI) which ranks items as if individuals are choosing them in turn [45].

Borderline functions (B) represent aggregation mechanisms that take into account
only a subset of the user preferences [58]. Examples of borderline functions are
Least Misery (LMS) (winner is the item with the highest of all lowest evaluations

4 The highest rank is assumed to be 1. For example, in collaborative filtering it is associated with
the highest rating. The highest rank is associated with the score #items-1.
5 For example, when using collaborative filtering, evaluations are denoted as ratings.
6 Also denoted as democratic functions.
7 ADD and AVG result in the same rankings.

item evaluations ADD AV G MUL
u1 u2 u3

t1 5 2 2 9 3 20
t2 3 3 4 10

√
3.3
√

36
√

t3 2 3 2 7 2.3 12

Table 2.4: Examples of consensus-based aggregation: Additive Utilitarian (ADD),
Average (AVG), and Multiplicative (MUL).

given to items – when using this function, items may be selected that nobody hates
but also nobody really likes; furthermore, there is the danger that a minority dic-
tates the group (especially in settings involving larger groups) [44]), Most Pleasure
(MPL) (winner is the item with the highest of all individual evaluations – items may
be selected that only a few persons really like)8, and Majority Voting (MAJ) (item
with the highest number of all evaluations representing the majority of item-specific
evaluations) (see Table 2.5). A further borderline aggregation function is Most Re-
spected Person (MRP) that recommends a rating (evaluation) proposed by the most
respected individual.

item evaluations LMS MPL MAJ
u1 u2 u3

t1 5 2 2 2 5
√

2
t2 3 3 4 3

√
4 3

√

t3 2 3 2 2 3 2

Table 2.5: Examples of Borderline aggregation: Least Misery (LMS), Most Pleasure
(MPL), and Majority Voting (MAJ).

The following discussions of group recommendation approaches will be based on
a set of example items from the travel domain (see Chapter 1). Using these items,
we will show how different recommendation approaches can determine group rec-
ommendations with aggregated models and aggregated predictions.

2.4 Collaborative Filtering for Groups

Collaborative filtering (CF) [38, 41] is based on the idea of recommending items
that are derived from the preferences of nearest neighbors, i.e., users with prefer-
ences similar to those of the current user. In the following, we show how aggregated
predictions and aggregated models can be applied to CF for groups.

8 Variants thereof can be considered [44], for example, most pleasure without misery where only
items are considered that do not have evaluations below a predefined threshold.

Aggregated Predictions. When applying the aggregated predictions strategy in
combination with collaborative filtering, ratings are determined for individual users
and then aggregated into a recommendation for the group (see Figure 2.2).

Fig. 2.2: Collaborative filtering for groups based on aggregated predictions (rat-
ings). r̂i j is the rating prediction for item j proposed by recommender i (i = 1..n).

Following this approach, for each group member (and corresponding recom-
mender) i and each item j not rated by this group member, a rating prediction r̂i j
is determined [4]. For simplicity, we assume that the items {t1, .., t10} in Table 2.6
have not been previously consumed by the group members, i.e., the rating has been
proposed by a collaborative filtering algorithm.9 Thereafter, these predictions are
aggregated on the basis of different aggregation functions (see Table 2.2). In the fol-
lowing example, we assume that some variant of collaborative filtering [17, 28, 53]
has already been applied to predict ratings (e.g., a matrix factorization approach
[51, 56] can be applied to infer user× item rating tables as shown in Table 2.6).

item name rating predictions r̂i j (scores) aggregation

u1 u2 u3 u4 u5 AVG BRC LMS
t1 Vienna 5.0(9) 3.5(2) 1.0(0) 4.5(7) 5.0(9) 3.8 27 1.0
t2 Yellowstone 2.5(0) 4.0(4) 3.0(3) 2.0(0) 1.1(0) 2.5 7 1.1
t3 New York 4.9(8) 3.8(3) 4.0(7) 3.3(4) 4.0(5) 4.0 27 3.3

√

t4 Blue Mountains 3.1(2) 5.0(9) 4.2(8) 2.4(1) 4.4(8) 3.8 28 2.4
t5 London 4.0(4) 4.3(7) 3.3(5) 4.1(6) 2.9(3) 3.7 25 2.9
t6 Beijing 4.5(6) 4.1(5) 5.0(9) 3.2(3) 4.2(6) 4.2

√
29
√

3.2
t7 Cape Town 4.2(5) 4.2(6) 3.4(6) 3.1(2) 3.8(4) 3.7 23 3.1
t8 Yosemity 3.4(3) 2.6(0) 1.6(1) 5.0(9) 2.4(2) 3.0 15 1.6
t9 Paris 4.7(7) 3.1(1) 2.7(2) 3.6(5) 2.2(1) 3.3 16 2.2
t10 Pittsburgh 2.6(1) 4.5(8) 3.1(4) 4.6(8) 4.3(7) 3.8 28 2.6

Table 2.6: Rating predictions and corresponding scores (scores are used by BRC).
Recommendations are derived on the basis of aggregation functions (AV G, BRC,
LMS). The

√
symbol indicates the item with the best evaluation.

9 Item predictions for individual users can be based on collaborative recommendation approaches
as introduced in Chapter 1.

The result of the aggregation step is a ranking of candidate items. In our example,
the majority of aggregation functions recommends the item t6.

An alternative to the aggregation of ratings is to aggregate predicted items where
items determined by individual recommenders are aggregated into a group recom-
mendation (see Figure 2.3).

Fig. 2.3: Collaborative filtering for groups based on aggregated predictions (items).

Following this approach, items with the highest predicted rating for a specific
user are considered as part of the recommendation. If we want to generate a rec-
ommendation consisting of, for example, at most 10 items, the two top-rated items
(upper bound) in each group member specific recommendation can be included in
the group recommendation. In the example shown in Table 2.6, {t1, t3} are the two
top-rated items of user u1, {t4, t10} are chosen for user u2, {t4, t6} for user u3, {t8, t10}
for user u4, and {t1, t4} for user u5. The union of these group member individual rec-
ommendations is {t1, t3, t4, t6, t8, t10} which represents the group recommendation –
in this context, group members are in charge of item ranking. This way of construct-
ing a group recommendation is similar to the idea of the Fairness (FAI) aggregation
function (see Table 2.2).

Aggregated Models. When using this aggregation approach, ratings of individual
users are aggregated into a group profile gp (see Figure 2.4). Based on the group
profile (gp), collaborative filtering determines a ranking for each candidate item.

Fig. 2.4: Collaborative filtering for groups based on aggregated models.

In the aggregated models approach, the group is represented by a group pro-
file (gp) that includes item-specific evaluations (ratings) derived through aggrega-
tion functions applied to the item ratings of individual group members. Often, the
aggregation is based on a weighted average function (see, e.g., [4]), however, the
aggregation functions mentioned in Table 2.2 can be considered alternatives.

Following the aggregated models strategy, collaborative filtering is applied to in-
dividual group profiles, i.e., for a given group profile (gp), similar group profiles
(k nearest neighbors k-NN)10 are retrieved and used for determining a recommen-
dation. In our example, the item t2 (Yellowstone) is not known to the current group
gp but received the highest ratings from the nearest neighbor groups gx and gy (see
Table 2.7) which makes it a recommendation candidate for gp.

item name gp gx ∈ NN gy ∈ NN recommended ratings

t1 Vienna 5.0 5.0 4 -
t2 Yellowstone - 4.0 4.5 4.49

√

t3 New York 4.0 3.0 3.5 -
t4 Blue Mountains - 4.5 4 4.44
t5 London 4.0 3.9 3.5 -
t6 Beijing - 3.5 3 3.44
t7 Cape Town - 4.7 3 3.99
t8 Yosemity 3.0 3.8 3.2 -
t9 Paris 4.0 3.9 2.9 -
t10 Pittsburgh - 5.0 3.3 4.28
average 4.0 4.13 3.5 -

Table 2.7: Applying collaborative filtering (CF) to a group profile gp (gp-ratings
have no relationships to earlier examples). The

√
symbol indicates the item with

the best CF-based evaluation.

The similarity between the group profile gp and another group profile gx (the
nearest neighbor) can be determined, for example, using the Pearson correlation
coefficient (see Chapter 1). Formula 2.1 is an adapted version that determines the
similarity between a group profile and the profiles of other groups. In this context,
T Dc represents the set of items that have been rated by both groups (gp and gx),
rgx,ti is the rating of group gx for item ti, and rgx is the average rating of group gx.

similarity(gp,gx) =
∑ti∈T Dc(rgp,ti − rgp)× (rgx,ti − rgx)√

∑ti∈T Dc(rgp,ti − rgp)2×
√

∑ti∈T Dc(rgx,ti − rgx)2
(2.1)

The information about groups with a similar rating behavior (i.e., nearest neigh-
bors NN) compared to the current group gp is the basis for predicting the rating of
gp for an item t that has not been rated by members of gp (see Formula 2.2).

10 In our example, we assume k = 2.

prediction(gp, t)= r̂(gp, t)= rgp+
∑g j∈NN similarity(gp,g j)× (rg j,t − rg j)

∑g j∈NN similarity(gp,g j)
(2.2)

Recommendations can also be determined on the basis of ensemble voting [59]:
each aggregation function can represent a vote. The more such votes an item re-
ceives, the higher is it’s relevance for the group. In our running example, item t6 is
regarded as favorite item since it received the best evaluation by the majority of the
used aggregation functions (see the aggregated predictions example in Table 2.6).

2.5 Content-based Filtering for Groups

Content-based filtering (CBF) is based on the idea of recommending new items with
categories11 similar to those preferred by the current user. Categories preferred by
a user (group member) are stored in a user profile; these categories are derived from
descriptions of items already consumed by the user.

Aggregated Predictions. When using this aggregation strategy, group member
individual content-based recommenders determine the similarity between (a) items
not consumed by him/her and (b) his/her user profile.12 The identified item similar-
ities (or items) are then aggregated and thus form the basis of a group recommenda-
tion (see Figure 2.5).

Fig. 2.5: Content-based filtering for groups based on aggregated predictions. Sim-
ilarity si j denotes the similarity between user i and item j determined by recom-
mender i (i = 1..n).

Table 2.8 depicts example profiles of group members u1..u5. For each of these
profiles, the similarity to the items included in Table 1.8 is determined (we assume
that these items have not been consumed/evaluated by the group members). These
similarity values are the basis for a group recommendation (see Table 2.9).

11 Alternatively, keywords extracted from item descriptions.
12 The determination of user × item similarities can be based on content-based recommendation
approaches as discussed in Chapter 1.

category individual item categories
u1 u2 u3 u4 u5

beach x x x x x
city tours - x - x -

nature x - x - x
entertainment - - - - -

Table 2.8: Example profiles of group members (preferences regarding travel desti-
nations). If a group member ui likes a category, this is denoted with ’x’.

The user-item similarities of Table 2.9 are calculated by a content-based recom-
mender (similarity metric 1.3 in Chapter 1). The calculation is based on the item
categories included in Table 2.8, i.e., beach, city tours, nature, and entertainment.
For example, similarity(u1, t2) =

2∗|categories(u1)∩categories(t2)|
|categories(u1)|+|categories(t2)|

= 2
3 = 0.66.

item name user-item similarities (scores) aggregation

u1 u2 u3 u4 u5 AVG BRC LMS
t1 Vienna 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0
t2 Yellowstone 0.66(7.5) 0(1) 0.66(7.5) 0(1) 0.66(7.5) 0.4 24.5 0
t3 New York 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0
t4 Blue Mountains 0.66(7.5) 0(1) 0.66(7.5) 0(1) 0.66(7.5) 0.4 24.5 0
t5 London 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0
t6 Beijing 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0
t7 Cape Town 0.66(7.5) 0.66(8.5) 0.66(7.5) 0.66(8.5) 0.66(7.5) 0.66

√
39.5
√

0.66
√

t8 Yosemity 0.66(7.5) 0(1) 0.66(7.5) 0(1) 0.66(7.5) 0.4 24.5 0
t9 Paris 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0
t10 Pittsburgh 0(2.5) 0.66(8.5) 0(2.5) 0.66(8.5) 0(2.5) 0.26 24.5 0

Table 2.9: User× item similarities (and corresponding scores used by BRC) as input
for AV G, BRC, LMS to derive a group recommendation. The

√
symbol indicates the

item with the best evaluation.

On the basis of a user × item similarity matrix, aggregation functions can deter-
mine a group recommendation. An alternative to the aggregation of similarities is
to aggregate items proposed by individual content-based recommenders. If we want
to generate a recommendation consisting of, for example, at most 5 items (upper
bound), the highest rated item of each group member can be included in the group
recommendation. In our example depicted in Table 2.9, {t2} is among the highest
rated items of user u1 (the other three are excluded due to the user-specific limit of
one item), t7 can be selected for user u2, t4 for user u3, t10 for user u4, and t2 for user
u5. The group recommendation includes all of these items: {t2, t4, t7, t10}.

Aggregated Models. When using this strategy, preferred categories of individual
users are integrated into a group profile gp. Thereafter, content-based filtering de-

termines recommendations by calculating the similarities between gp and candidate
items (items not consumed by the group – see Figure 2.6).

Fig. 2.6: Content-based filtering for groups based on aggregated models.

In our example (see Table 2.10), the derived group profile is represented by the
union of the categories stored in the individual user profiles. Items are recommended
that are similar to the categories in the group profile and have not been consumed by
group members. In our example, the derived group profile gp entails the categories
Beach, City Tours, and Nature.

category individual item categories gp
u1 u2 u3 u4 u5

beach x x x x x x
city tours - x - x - x

nature x - x - x x
entertainment - - - - - -

Table 2.10: Aggregation of preferences (categories) of group members into a group
profile gp.

The similarity between the group profile gp and candidate items can be de-
termined using Formula 2.3 which is an adaption of Formula 1.3 to group set-
tings. The similarities between gp and items ti (taken from our example item-
set shown in Table 1.8) are determined by comparing the categories beach, city-
tours, nature, and entertainment (see Table 2.11). For example, similarity(gp, t1) =
2∗|categories(gp)∩categories(t1)|
|categories(gp)|+|categories(t1)|

= 2
5 = 0.4. In this context, we assume that the items of

Table 2.11 have not been consumed by the group.

similarity(gp, item) =
2∗ |categories(gp)∩ categories(item)|
|categories(gp)|+ |categories(item)|

(2.3)

item name similarity(gp, ti)

t1 Vienna 2
5 = 0.4

t2 Yellowstone 2
4 = 0.5

t3 New York 2
5 = 0.4

t4 Blue Mountains 2
4 = 0.5

t5 London 2
5 = 0.4

t6 Beijing 2
5 = 0.4

t7 Cape Town 6
7 = 0.86

√

t8 Yosemity 2
4 = 0.5

t9 Paris 2
5 = 0.4

t10 Pittsburgh 2
4 = 0.5

Table 2.11: Applying content-based filtering (CBF) to a group profile gp (see Table
2.10). The

√
symbol indicates the item with the best evaluation determined by CBF.

2.6 Constraint-based Recommendation for Groups

Taking into account groups in constraint-based recommendation [20] requires the
extension of our definition of a recommendation task, as given in Chapter 1.

Definition (Recommendation Task for Groups). A recommendation task for
groups can be defined by the tuple (G, R = R1∪ ..∪Rm, I) where G = {u1,u2, ..,um}
represents a group of users, R j = {r1 j,r2 j, ...,rn j} represents a set of requirements
(ri j denotes the requirement i of group member j), and I = {t1, .., tk} represents a
set of items. The goal is to identify items in I which fulfill all requirements in R. A
solution for a recommendation task can be defined as follows.

Definition (Recommendation Task for Groups – Solution). A solution for a rec-
ommendation task for groups (G,R, I) is a set S ⊆ I such that ∀ti ∈ S : ti ∈ σ[R]I
where σ is the selection operator of a conjunctive query, R represents requirements
defined by group members, and I represents a collection of items.

In group recommendation settings, each group member should specify his/her re-
quirements (in our example, these are hard constraints related to season and topics)
and preferences (weights or soft constraints) with regard to a set of interest dimen-
sions (in our example, security, attractiveness, and crowdedness) – see Table 2.12.
Requirements are constraints that are used to pre-select items, preferences specify
weights that are used to rank the pre-selected items.

user requirements preferences (weights)
season topics security attractiveness crowdedness

u1 r11 :spring - 0.5 0.4 0.1
u2 r12 :spring r22 :citytours 0.2 0.7 0.1
u3 - r13 :entertainment 0.3 0.3 0.4
u4 r14 :spring - 0.6 0.2 0.2
u5 - r15 :citytours 0.1 0.8 0.1

Table 2.12: User-specific requirements and preferences (weights).

In both scenarios, i.e., aggregated predictions and aggregated models, group
members have to define their requirements and preferences.

Aggregated Predictions. We will first show how to handle aggregated predictions
in constraint-based recommendation for groups (see Figure 2.7).

Fig. 2.7: Constraint-based recommendation for groups based on aggregated predic-
tions. User preferences are constructed iteratively (conversational recommendation
approach). Item ti j represents item j (including corresponding item utilities) deter-
mined by recommender i.

A constraint-based recommender derives user-specific recommendations (items
and user-specific item utilities) on the basis of a set of requirements and preferences.
Item utilities for specific group members can be determined with multi-attribute
utility theory (MAUT) [60, 62] (see Formula 1.4). For example, on the basis of
the user requirements defined in Table 2.12 and the example itemset of Table 1.8,
the utility of item t1 for user u1 can be determined as follows: utility(u1, t1) =
∑d∈Dimensions contribution(t1,d) × weight(u1,d) = contribution(t1,security) ×
weight(u1,security) + contribution(t1,attractiveness)×weight(u1,attractiveness)
+ contribution(t1,crowdedness) × weight(u1,crowdedness) = 5.0 × 0.5 + 5.0
× 0.4 + 2.0 × 0.1 = 2.5 + 2.0 + 0.2 = 4.7. These user-specific item utilities are
aggregated into a group recommendation (see Table 2.13).

If an entry of item ti in user-specific item utilities in Table 2.13 > 0, this indi-
cates that the item ti fulfills all requirements of the corresponding group member.
In contrast, table entries = 0 are used to indicate that an item does not completely
fulfill the requirements of a group member. For example, the requirements of u2
({r12,r22}) are not completely fulfilled by t2 (r22 : topics = citytours is not sup-
ported). Even if an item does not completely fulfill the requirements of some users,
it could be recommended. The lower the number of users with completely fulfilled
requirements with regard to a specific item ti, the lower the probability that ti will be
recommended. A set of individual user requirements can also be inconsistent with
the effect that no fitting item can be identified. In such a case, diagnosis methods
can help to guide the user out of the no solution could be found dilemma [23].13

13 Issues related to conflict resolution will be discussed at the end of this section.

item item contribution user-specific item utilities (scores) aggregation

secur. attr. crowd. u1 u2 u3 u4 u5 AVG BRC LMS
t1 5.0 5.0 2.0 4.7(9) 4.7(9) 3.8(9) 4.4(9) 4.7(9) 4.46

√
45.0
√

3.8
√

t2 4.0 4.0 4.0 4(7.5) 0.0 0.0 4(7) 0.0 1.6 14.5 0.0
t3 3.0 5.0 1.0 3.6(4.5) 4.2(7.5) 2.8(7.5) 3(4) 4.4(7.5) 3.6 31.0 2.8
t4 4.0 3.0 5.0 3.7(6) 0.0 0.0 4(7) 0.0 1.54 13.0 0.0
t5 3.0 4.0 1.0 3.2(3) 3.5(6) 2.5(6) 2.8(2) 3.6(6) 3.12 23.0 2.5
t6 3.0 3.0 1.0 2.8(1) 2.8(3.5) 2.2(5) 2.6(1) 2.8(3) 2.64 13.5 2.2
t7 2.0 3.0 3.0 2.5(0) 2.8(3.5) 0.0 2.4(0) 2.9(4) 2.12 7.5 0.0
t8 4.0 4.0 4.0 4(7.5) 0.0 0.0 4(7) 0.0 1.6 14.5 0.0
t9 3.0 5.0 1.0 3.6(4.5) 4.2(7.5) 2.8(7.5) 3(4) 4.4(7.5) 3.6 31.0 2.8
t10 3.0 3.0 3.0 3(2) 3(5) 0.0 3(4) 3(5) 2.4 16.0 3.0

Table 2.13: User-specific item utilities (and corresponding scores used by BRC) with
regard to security, attractiveness, and crowdedness determined by utility analysis
(see Chapter 1). The

√
symbol indicates the item with the best evaluation.

Also in constraint-based recommendation, an alternative to the aggregation of
user × item utilities (Table 2.13) is to aggregate items proposed by individual rec-
ommenders. If we want to generate a recommendation based on the Fairness (FAI)
aggregation strategy and 5 is the upper bound for the number of proposed items,
each group member would choose his/her favorite item (not already selected by an-
other group member). In the example shown in Table 2.13, t1 has the highest utility
for user u1, it also has the highest utility for user u2, however, since u1 already se-
lected t1, u2 has to identify a different one, which is now t3. Furthermore, we assume
that u3 selects t9, u4 selects t8, and user u5 selects t5. The group recommendation
resulting from this aggregation step is {t1, t3, t5, t8, t9}.

Aggregated Models. Another possibility of determining recommendations for
groups in constraint-based recommendation scenarios is to first aggregate individual
user preferences [33] (requirements and weights related to interest dimensions) into
a group profile gp and then to determine recommendations (see Figure 2.8).

Fig. 2.8: Constraint-based recommendation for groups based on aggregated models.
Group preferences are constructed iteratively (conversational recommendation).

The construction of a group profile gp is sketched in Table 2.14. Beside aggregat-
ing the user requirements R = {r11,r12,r22,r13,r14,r15}, we also have to aggregate
user preferences specified in terms of weights related to the interest dimensions se-
curity, attractiveness, and crowdedness.

weights &
requirements u1 u2 u3 u4 u5 gp

security 0.5 0.2 0.3 0.6 0.1 0.34 (AVG)
attractiveness 0.4 0.7 0.3 0.2 0.8 0.48 (AVG)
crowdedness 0.1 0.1 0.4 0.2 0.1 0.18 (AVG)

season r11: spring r12: spring - r14: spring - r11,r12,r14

topics - r22:
citytours

r13: enter-
tainment - r15:

citytours r22,r13,r15

Table 2.14: Construction of a group profile (gp). User-specific weights regard-
ing the interest dimensions security, attractiveness, and crowdedness are aggre-
gated into gp using AVG. Furthermore, user requirements ri j are combined into
R = {r11,r12,r22,r13,r14,r15}.

On the basis of the requirements defined in gp and the item defini-
tions in Table 1.8, a conjunctive query σ[r11,r12,r22,r13,r14,r15]I results in: {t1,
t3, t5, t6, t7, t9}, i.e., these items are consistent with the requirements de-
fined in gp. Formula 2.4 can be used then to determine item-specific util-
ities on the basis of the group profile gp. For example, utility(gp, t1) =

∑d∈Dimensions contribution(t1,d) × weight(gp,d) = contribution(t1,security) ×
weight(gp,security) + contribution(t1,attractiveness)×weight(gp,attractiveness)
+ contribution(t1,crowdedness)×weight(gp,crowdedness) = 5 × 0.34 + 5 × 0.48
+ 2× 0.18 = 1.7 + 2.4 + .36 = 4.46. The resulting utilities are shown in Table 2.15.

utility(gp, item) = ∑
d∈Dimensions

contribution(item,d)×weight(gp,d) (2.4)

It can be the case that a set of user requirements is inconsistent with all items
of an itemset. In such a situation, users of a constraint-based recommender have to
adapt their requirements such that at least one solution can be identified. Related
techniques will be discussed in the following section.

2.7 Handling Inconsistencies

Since item retrieval in constraint-based recommendation is based on semantic
queries (e.g., conjunctive queries), situations can occur where no solution can be
identified for the given set of requirements [25], i.e., σ[R]I = /0 (R represents the
union of requirements specified by individual group members and I represents the

item item contribution utility(gp, ti)
secur. attr. crowd.

t1 5 5 2 4.46
√

t2 4 4 4 4.0
t3 3 5 1 3.6
t4 4 3 5 3.7
t5 3 4 1 3.12
t6 3 3 1 2.64
t7 2 3 3 2.66
t8 4 4 4 4.0
t9 3 5 1 3.6
t10 3 3 3 3

Table 2.15: Item utilities determined on the basis of the weights defined in gp (see
Table 2.14). Only items ti are taken into account that are consistent with the require-
ments in gp (others are shown greyed out). The

√
symbol indicates the item with

the highest utility.

example itemset shown in Table 1.8). An example of such a situation is the fol-
lowing (adapted version of the examples introduced in the previous sections): R
= {r11 : season = summer,r21 : eval = 5.0,r12 : season = summer,r13 : topics =
entertainment,r14 : topics = entertainment,r15 : eval = 5.0} where σ[R]I = /0. Also
in the context of group recommendation scenarios, we are interested in how to
change the requirements defined by group members in order to be able to come
up with a recommendation consistent with the requirements of all group members.

In the aggregated predictions scenario, inconsistencies induced by requirements
occur on the ’single user’ level: a user specifies his/her requirements but no recom-
mendation can be identified (see Chapter 1). In this context, diagnosis algorithms
help to identify possible changes to the user requirements such that a recommenda-
tion can be identified. This way, it can be guaranteed that no user-specific inconsis-
tent requirements are passed to the group level.

In the aggregated models scenario, the task of resolving inconsistent situations
is a similar one: in the case of inconsistencies between requirements defined by a
specific group member, diagnosis (see Chapter 1) can actively support him/her in
restoring consistency.14 However, even if the requirements of a user profile are con-
sistent, integrating the requirements of individual users into a group profile gp can
induce inconsistencies on the group level [18]. In the aggregated models scenario,
diagnosis also supports the achievement of global consistency, i.e., all joint pref-
erences defined by individual group members allow the derivation of at least one
solution. Table 2.16 shows the user requirements specified in our example.

The conflict sets induced by our example requirements (R) are: CS1 : {r11,r21},
CS2 : {r11,r15}, CS3 : {r12,r21}, CS4 : {r12,r15}, CS5 : {r13,r21}, CS6 : {r13,r15},
CS7 : {r14,r21}, and CS8 : {r14,r15}. If we resolve the conflicts by deleting the re-

14 A discussion of algorithms for diagnosis determination can be found in [21, 23, 26, 55].

requirement ∆i
∆1 ∆2 ∆3

r11(season=0100) • •
r21(eval=5.0) • •
r12(season=0100) •
r13(topic=entertainment) •
r14(topic=entertainment) •
r15(eval=5.0) • •

Table 2.16: Example user requirements and related diagnoses in the aggre-
gated models scenario (ri j = requirement i of user j): ∆1 = {r21,r15}, ∆2 =
{r11,r12,r13,r14}, and ∆3 = {r11,r21,r15}. ∆3 is a non-minimal diagnosis included
to show that aggregation functions prefer minimal diagnoses.

quirements r21 and r15, a corresponding diagnosis (hitting set) ∆1 = {r21,r15} can
be identified. The second diagnosis is ∆2 = {r11,r12,r13,r14}. The determination of
the diagnoses ∆1 and ∆2 is shown on the basis of the HSDAG approach (Hitting Set
Directed Acyclic Graph) [55] (see Figure 2.9). Table 2.16 includes a third diagnosis
(∆3 = {r11,r21,r15}) which has been included to show that non-minimal diagnoses
∆¬min are not preferred by aggregation functions (see Tables 2.17 – 2.18). A corre-
sponding subset (∆ ⊂ ∆¬min) exists that already fulfills the diagnosis properties. In
our example, ∆1 ⊂ ∆3 holds, i.e., ∆3 is a non-minimal diagnosis.

Fig. 2.9: Determination of the minimal diagnoses ∆1 and ∆2 using the HSDAG
approach [55] (paths to minimal diagnoses are denoted with

√
).

As different diagnosis candidates exist (∆1,∆2,∆3), we have to figure out which
one should be recommended to the group. Similar to the determination of recom-
mendations, diagnosis candidates can be ranked on the basis of different aggregation
functions. In Table 2.17 we sketch an approach to rank diagnoses depending on the
number of requirements that have to be deleted/adapted by individual group mem-
bers. Diagnosis ∆1 has the lowest number of needed changes (ADD); consequently
it can be recommended. Least Misery (LMS) recommends one out of {∆1,∆2}. As

mentioned, we will not discuss diagnosis algorithms in this chapter; for a detailed
discussion of diagnosis search and selection in group contexts we refer to [18].

diagnosis changes per user aggregation
u1 u2 u3 u4 u5 ADD LMS

∆1 1 0 0 0 1 2
√

1
√

∆2 1 1 1 1 0 4 1
√

∆3 2 0 0 0 1 3 2

Table 2.17: Diagnosis recommendation in the aggregated models scenario based on
(1) counting the needed changes per user and (2) LMS. The

√
symbol indicates

recommended diagnosis candidates.

Diagnosis ranking can be better personalized, if we assume that requirements
have importance weights learned, for example, on the basis of previous group de-
cisions [23, 29]. Table 2.18 depicts an example of the determination of diagnosis
utilities on the basis of weighted requirements – the utility of a diagnosis can be
determined on the basis of Formula 2.5. That implements an additive aggregation
strategy: the higher the sum of the individual weights w(ri j), the higher the impor-
tance of the related requirements for the group members. Consequently, the lower
the total importance of the included requirements, the higher the utility of the cor-
responding diagnosis (see Formula 2.5). In this setting, diagnosis ∆2 outperforms
∆1 (also ∆3) since ∆2 includes requirements less relevant for the individual group
members. Least Misery (LMS) in this context analyzes (user-wise) attribute-specific
estimated negative impacts of requirement deletions.

∆i weighted requirements aggregation
w(r11) = 0.1 w(r21) = 0.3 w(r12) = 0.1 w(r13) = 0.1 q(r14)0.1 w(r15)=0.3 utility LMS

∆1 0 0.3 0 0 0 0.3 1.67 0.3
∆2 0.1 0.0 0.1 0.1 0.1 0 2.5

√
0.1
√

∆3 0.1 0.3 0 0 0 0.3 1.42 0.3

Table 2.18: Utility-based diagnosis recommendation in the aggregated models sce-
nario. The

√
symbol indicates the highest rated diagnosis.

utility(∆) =
1

∑ri j∈∆ w(ri j)
(2.5)

Remark. An issue for future work in this context is to analyze the possibility
of combining the group profile (gp) with local user profiles. This could serve to
assure consensus in the group earlier, and avoid efforts related to conflict resolution
on the group level. If parts of the group profile are integrated into individual user
profiles, this could also help to take into account the requirements of other group
members at the very beginning of the decision making process. Further details on

how to determine personalized diagnoses on the basis of search heuristics can also
be found in [23, 24].

2.8 Critiquing-based Recommendation for Groups

Critiquing-based recommendation [10, 30] is based on the idea of showing refer-
ence items to users and allowing users to give feedback in terms of critiques. Cri-
tiques trigger a new critiquing cycle where candidate items (items that fulfill the
critiques defined by the user15) are compared with regard to their utility as a new
reference item. This utility is evaluated on the basis of (a) similarity metrics (see
Chapter 1) that estimate the similarity between a reference item and a candidate
item and (b) the degree of support of the critiques already defined by a user.16 In-
tuitively, the more similar a candidate item is with regard to the reference item and
the more critiques it supports, the higher its utility. In the following, we assume that
the determination of candidate items for a specific group member takes into account
his/her previous critiques and the similarity between reference and candidate item.
The utility of a candidate item as the next reference item can be determined on the
basis of Formulae 2.6 – 2.8. In this context, utility(c,r,u) denotes the utility of a
candidate item c to act as a reference item for user u taking into account the current
reference item r. Furthermore, sim(c,r) determines the similarity between r and c.
Finally, support(c,critiques(u)) evaluates the support candidate item c provides for
the critiques defined by user u. In this context, support is measured in terms of (a)
consistency between candidate item and critiques and (b) the weight of individual
critiques (for example, older critiques could have a lower weight).

utility(c,r,u) = sim(c,r)× support(c,critiques(u)) (2.6)

support(c,critiques) = Σcrit∈critiquesconsistent(c,crit)×weight(crit) (2.7)

consistent(c,crit) =

{
1 if σ[crit]{c} 6= /0
0 otherwise

(2.8)

Let us assume that the first reference item (item r that is the first one shown to
start a critiquing session) shown to each group member is t1. Table 2.19 depicts
example critiques defined thereafter on t1 by the group members u1, u2, and u3. We
also assume that items used in the example correspond to the travel destinations
itemset shown in Table 1.8. Finally, we assume equal weights for critiques.

15 Different variants thereof exist in critiquing-based systems ranging from taking into account
only the most recent critique to all critiques in the critiquing history (see Chapter 1).
16 Also denoted as compatibility score [47].

user 1st critique 2ndcritique

u1 t1:winter ∈ season (cr11) t3:eval > 3.3 (cr12)
u2 t1:nature ∈ topics (cr21) t2:winter ∈ season (cr22)
u3 t1:eval > 4.5 (cr31) t4:citytours ∈ topics (cr32)

Table 2.19: A group-based critiquing scenario: each group member already specified
two critiques (denoted as critiquing history). The reference item for the 1st critiquing
cycle is assumed to be t1(u1,u2,u3), the reference items for the 2nd critiquing cycle
are t3(u1), t2(u2), and t4(u3).

The similarities between potential combinations of reference items (r)
and candidate items (c) are depicted in Table 2.20. The attributes season
(EIB), topics (EIB), and eval (NIB) are taken into account.17 For exam-
ple, sim(t1,t2) = s(t1.season.spring, t2.season.spring)× 1

9 + s(t1.season.summer,
t2.season.summer)× 1

9 + s(t1.season.autumn, t2.season.autumn)× 1
9 + s(t1. season.

winter, t2.season.winter)× 1
9 + s(t1.topics.citytours, t2.topics.citytours)× 1

9 + s(t1.
topics.entertainment, t2.topics.entertainment)× 1

9 + s(t1.topics.nature, t2.topics.
nature)× 1

9 + s(t1.topics.beach, t2.topics.beach)× 1
9 + s(t1.eval, t2.eval)× 1

9 = 0.66.

item t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 1.0 .66 .75 .32 .86 .88 .54 .61 .74 .77
t2 - 1.0 .43 .64 .53 .54 .67 .96 .42 .64
t3 - - 1.0 .52 .88 .86 .54 .42 .99 .74
t4 - - - 1.0 .4 .44 .53 .6 0.51 .56
t5 - - - - 1.0 .96 .42 .53 .89 .84
t6 - - - - - 1.0 .43 .5 0.85 .88
t7 - - - - - - 1.0 .62 .53 .53
t8 - - - - - - - 1.0 0.42 .6
t9 - - - - - - - - 1.0 .73
t10 - - - - - - - - - 1.0

Table 2.20: Items of Table 1.8 (similarity with regard to season, topics, and eval).

The selection of a new reference item in the critiquing scenario shown in Table
2.19 is depicted in Table 2.21. In this context, reference items are not considered
potential candidate items, since the same item should not be presented in follow-
up critiquing cycles. Each table entry represents the utility of a specific candidate
item (from Table 1.8) with regard to a reference item. For example, utility(c : t2,r :
t3,u : u1) = sim(t2, t3)× support(t2,critiques(u1)) = 0.43× (0× 0.5+ 1× 0.5) =
0.21 (two critiques, i.e., equal weights = 0.5).

If a user interacts with a critiquing-based recommender in standalone mode (cri-
tiques of other users are not taken into account), he/she receives recommendations

17 Similarity metrics introduced in Chapter 1 – we assume, minval=0 and maxval=5.

u r utility(ti,r,u)
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

u1 t3 - .21 - .52 0 .43 .54
√

0 .49 .37
u2 t2 - - .21 .64 0 0 .67

√
.48 .21 0

u3 t4 - 0 .26 - .2 .44 .26 0 .25 .56
√

Table 2.21: Selection of new reference items based on the utility of candidate items
ti (calculation is based on Formula 2.6). We assume that previous reference items are
not reference item candidates anymore (represented by ’-’ entries). The

√
symbol

denotes the selected new reference items.

related to his/her preferences [47]. In parallel, critiques from individual group mem-
bers can be forwarded to a group recommender. Different variants thereof are possi-
ble. For example, recommendations determined for a single user can also take into
account the preferences of the whole group by simply taking into account some or
all of the critiques stored in the group profile [47]. In this context, weights regarding
the trade-offs between the importance of user-individual critiques and critiques on
the group level have to be specified.

Aggregated Predictions. The process of critiquing-based group recommendation
using aggregated predictions is sketched in Figure 2.10.

Fig. 2.10: Critiquing-based recommendation for groups with aggregated predic-
tions. User preferences are constructed iteratively (conversational recommendation).

On the basis of an initial reference item, individual critiquing-based recom-
menders start the first critiquing cycle and – depending on user feedback – determine
follow-up reference items. In other words, several interaction cycles preceed a de-
cision. After individual group members have completed their selection process, the
corresponding results (see, e.g., Table 2.19) can be used to determine a group rec-
ommendation. Table 2.22 depicts user-specific utilities of new items (the similarity
values are taken from Table 2.21).

An alternative to the aggregation of item utilities (Table 2.22) is to aggregate
items proposed by individual critiquing-based recommenders. A group recommen-
dation can be determined, for example, by taking the item with the highest utility

c utility(c,r,u) (score) aggregation
u1(r : t3) u2(r : t2) u3(r : t4) AVG BRC LMS

t1 0 (1.5) 0 (2) 0 (1.5) 0 5 0
t2 0.21 (4) 0 (2) 0 (1.5) 0.07 7.5 0
t3 0 (1.5) 0.21 (5.5) 0.26 (6.5) 0.16 13.5 0
t4 0.52 (8) 0.64 (8) 0 (1.5) 0.39 17.5 0
t5 0 (1.5) 0 (2) 0.2 (4) 0.07 7.5 0
t6 0.43 (6) 0 (2) 0.44 (8) 0.29 16 0
t7 0.54 (9) 0.67 (9) 0.26 (6.5) 0.49

√
24.5
√

0.26
√

t8 0 (1.5) 0.48 (7) 0 (1.5) 0.16 10 0
t9 0.49 (7) 0.21 (5.5) 0.25 (5) 0.32 17.5 0.21
t10 0.37 (5) 0 (2) 0.56 (9) 0.31 16 0

Table 2.22: User-specific utilities of new items (see Formula 2.6).
√

indicates the
item with the best evaluation determined by the corresponding aggregation function.

value per group member (Formula 2.6). The group recommendation is {t7, t10}. As
discussed in [30], items can be proposed by group members and group members
can provide counter-proposals that – with some likelihood – are acceptable to other
group members.

Aggregated Models. Following this strategy, a group model (critiquing history on
the group level) has to be generated (see Figure 2.11).

Fig. 2.11: Critiquing-based recommendation for groups with aggregated models.
Group preferences are constructed iteratively (conversational recommendation).

On the basis of a group model (group profile - gp), a corresponding group rec-
ommendation can be determined. In order to build a group profile (gp), critiques
defined by group members have to be aggregated. Table 2.23 depicts an example of
the aggregation of group member specific critiquing histories into a group profile
(gp). In this scenario, the aggregation of individual critiques can lead to a situation
where none of the items completely fulfills the defined critiques (see the example
group profile in Table 2.23). As a consequence, we have to identify recommenda-
tions which support as many critiques as possible. In order to determine a ranking
for the different items, Formula 2.9 can be applied where utility(t,gp) denotes the
utility of item t with regard to the critiques part of the group profile gp, and weight

represents the weight of a critique. In our example, we assume equal weights, how-
ever, weights can also be used to reduce the impact of less up-to-date critiques.

group G group profile (defined by critiques) of G

{u1,u2,u3}
winter ∈ season, nature ∈ topics, eval > 4.5,

citytours ∈ topics

Table 2.23: Set of critiques (=group profile gp) defined by the group G = {u1,u2,u3}.

utility(t,gp) = Σcrit∈critiques(gp)consistent(t,crit)×weight(crit) (2.9)

Table 2.24 represents a list of items (determined on the basis of Formula 2.9) and
corresponding utilities with regard to the critiques contained in the group profile gp.
For example, utility(t1,gp) = 0×0.25+0×0.25+0×0.25+1×0.25 = 0.25.

item utility

t1 0.25
t2 0.25
t3 0.5
t4 0.75

√

t5 0.25
t6 0.5
t7 0.75

√

t8 0.25
t9 0.5
t10 0.5

Table 2.24: Group-specific utilities of new items determined on the basis of Formula
2.9. The

√
symbol indicates items with the highest utility values.

2.9 Hybrid Recommendation for Groups

As already mentioned, hybrid recommendation helps to compensate specific limi-
tations of one recommendation approach with the strengths of another one [8, 13].
In Chapter 1, we already took a look at different basic hybrid recommendation ap-
proaches. We will now sketch hybridization in the context of group recommender
systems [3, 14, 16].

Weighted. The idea of weighted hybrid recommendation is to combine the results
received from individual recommenders into a corresponding group recommenda-
tion. Table 2.25 shows a simple example of applying weighted hybridization in the
context of group recommendation. A collaborative recommender for groups (CF)
based on the aggregated models (AM) strategy and a content-based filtering recom-
mender (CBF) for groups based on the aggregated predictions (AP) strategy return

the item rankings shown in Table 2.25. The Borda Count (BRC) strategy (see Table
2.2) can now be applied to aggregate the corresponding scores.

item recommender-specific evaluations (scores) aggregation
CF ratings (AM,AVG) CBF similarities (AP,LMS) BRC

t1 4.9 (8) 0.81 (9) 17
√

t2 2.2 (1) 0.32 (1) 2
t3 5.0 (9) 0.66 (7) 16
t4 4.3 (7) 0.61 (6) 13
t5 1.5 (0) 0.2 (0) 0
t6 3.8 (3) 0.55 (5) 8
t7 3.4 (2) 0.49 (4) 6
t8 4.1 (4) 0.45 (3) 7
t9 4.2 (5.5) 0.33 (2) 7.5
t10 4.2 (5.5) 0.79 (8) 13.5

Table 2.25: Recommendation results of two group recommenders (CF based on ag-
gregated models (AM) and CBF based on aggregated predictions (AP)) as list of
ranked items are aggregated on the basis of Borda Count (BRC). The

√
symbol

indicates the item with the best evaluation.

Mixed. Hybrid recommendation based on the mixed strategy combines the rec-
ommended items returned by the individual recommenders (see Table 2.26).

item recommender-specific rankings aggregation
CF (AM,AVG) CBF (AP,LMS) FAI (ranking)

t1 10 9 10
t2 2 1 1

√

t3 7 6 7
t4 6 5 6
t5 1 4 2
t6 3 7 4
t7 5 3 5
t8 9 8 9
t9 4 2 3
t10 8 10 8

Table 2.26: Recommendation results of two group recommenders (CF and CBF) as
a list of ranked items aggregated on the basis of Fairness (FAI) that implements the
zipper principle (alternate inclusion of best ranked items – the item ranked highest
by CBF is integrated first).

√
indicates the item with the highest ranking.

In our example, the rankings returned by two group recommenders are aggre-
gated using the fairness (FAI) function where items are included in the final rec-
ommendation following the zipper principle, i.e., the item ranked highest by the

CBF recommender is integrated first, then the item ranked highest by the CF rec-
ommender is integrated into the recommendation result, and so on.

2.10 Matrix Factorization for Groups

Up to now, we have discussed ways to apply the recommendation approaches of col-
laborative filtering, content-based filtering, constraint-based, critiquing-based, and
hybrid recommendation in group contexts. Matrix factorization is a popular ap-
proach to collaborative filtering based recommendations [39] . The underlying idea
is to explain ratings by characterizing items and users on the basis of a set of factors.
The original user × item matrix is separated into two lower-dimensional ones that
explain user item interactions on the basis of the mentioned factors (see Table 2.27).

In this context, each item t is associated with a vector qt that describes to which
extent t represents the factors. Furthermore, each user u is associated with a vector
pu that describes to which extent the factors are important for the user. Finally r̂ui =
qT

i pu represents an approximation of a user’s u rating of t (rui denotes a user’s real
rating). More formally, we factorize the rating matrix RRR ∈ Rn×m containing known
ratings for n users and m items into matrices PPP ∈ Rn×k and QQQ ∈ Rm×k such that
PPPQQQT closely approximates RRR. In literature and practice, there are several possibilities
to measure and minimize the approximation error of the factorization. A popular
choice for the approximation error is the sum of the squared errors combined with a
simple regularization term, e.g. ∑ru,i 6=•(ru,i−µ−p T

u qi)
2+λ (||pu||2+||qi||2), where

µ is the global rating average and • represents an unknown rating. Minimization of
the error is typically computed with a variant of the gradient descent method.

i1 i2 i3 i4 i5 i6 i7 i8
u1 5 1 2 2 2
u2 1 4 2 5 1 4
u3 3 5 1 2 4
u4 4 5 3 5 3
u5 4 1 1 4 3
u6 4 1 1 5 1
u7 2 2 2 4 1
u8 4 3 4 3

(a) Rating matrix RRR

pu,1 pu,2 pu,3
u1 0.27984223 1.33194126 -0.25748666
u2 -0.13639896 -1.00299326 1.09421098
u3 0.29145967 -1.08249042 0.85824434
u4 1.29398513 0.94631031 0.77574863
u5 0.25258519 0.72222304 -1.20079938
u6 -1.26795635 1.16829146 -0.11806872
u7 -0.82074846 0.92881098 -0.20635514
u8 0.15691092 0.64969789 0.53725284

(b) User factors PPP

qi,1 qi,2 qi,3
i1 0.23698436 1.38151089 -0.23953783
i2 -0.19159424 -1.01718827 0.59249957
i3 1.60559024 0.21567611 -0.26351522
i4 0.3814163 -0.94038814 0.9485212
i5 0.43533279 -0.3900103 1.52692825
i6 0.1258419 1.88675619 0.13922563
i7 -0.47012841 0.65365324 0.03900384
i8 0.98047664 -0.63261944 0.51537004

(c) Item factors QQQ

Table 2.27: We factorize the rating matrix RRR containing known ratings for n = 8
users and m = 8 items into matrices PPP and QQQ such that PPPQQQT closely approximates
RRR. For illustration purposes, we minimize the sum of the squared errors of the ap-
proximation together with a simple squared L2-norm regularization term. We set
k = 3 factors and regularization parameter to λ = 0.02. We initialize PPP and QQQ ran-
domly and optimize with the gradient descent algorithm. Note that factorization
brings similar users close to each other in the factor space (c.f. factors of users u2
and u3 in PPP), whereas dissimilar users are projected further apart (c.f. factors of
users u1 and u2 in PPP).

An approach to the application of matrix factorization in the context of group
recommendation scenarios is presented in [51]. The authors introduce two basic
strategies denoted as After Factorization (AF) and Before Factorization (BF). When
using AF (see Table 2.28), user-individual matrix factorization is performed in order
to identify user-specific factors which are thereafter aggregated (e.g., by determin-
ing the average (AVG) of the user-individual factor values). When using BF (see
Table 2.29), first user-individual item ratings are aggregated into a group profile,
followed by a matrix factorization approach. These two basic variants follow the
idea of aggregated predictions (AF) and aggregated models (BF).

pG,1 pG,2 pG,3
G 0.144968 -0.25118 0.56499

(a) AF: Group factors

i1 i2 i3 i4 i5 i6 i7 i8
G 2.40 3.41 2.88 3.68 3.87 2.47 2.64 3.44

(b) AF: Predicted ratings

Table 2.28: In the After Factorization (AF) approach the group of users is factorized
by merging factors of users (e.g., by calculating averages) in a given group. In our
example, we group three users from G = {u1,u2,u3}. Note that users u2 and u3 are
highly similar to each other but are highly dissimilar to user u1. Thus, we expect the
group ratings to be biased towards the ratings of users u2 and u3 as group ratings
for items i1 (lower because of a low rating from user u2) and i2 (higher because of
a high rating of user u2) show.

pG,1 pG,2 pG,3
G 0.12873 -0.56466 -0.03111

(a) BF: Group factors

i1 i2 i3 i4 i5 i6 i7 i8
G 2.11 3.38 2.94 3.40 3.08 1.80 2.42 3.32

(b) BF: Predicted ratings

Table 2.29: In the Before Factorization (BF) approach a virtual group user is cre-
ated from the rating matrix by e.g. calculating the average ratings (AV G) for the
users from a given group. In the next step, the group factors are calculated from the
given factorization by calculating the (Ridge) regression coefficients on the ratings
of the virtual user. Finally, the group factors allow us to predict group ratings. The
intuition behind BF approach is that the virtual user is a better representation of
the users group than a simple aggregation of users factors. In our example, BF pre-
dicts a significantly lower rating than AF for item i6 because there is much stronger
evidence in the data for a low rating (two 1-star ratings).

Due to its simplicity, AF is efficiently calculated and provides a solid baseline for
group recommendation approaches based on matrix factorization. However, in prac-
tice BF gives significantly better prediction results on larger datasets and for larger
groups. For more details on matrix factorization based recommendation approaches

we refer to [39]. Approaches to apply matrix factorization in the context of group
recommendation scenarios are discussed in [32, 51].

2.11 Conclusions and Research Issues

In this chapter, we have introduced different group recommendation techniques
which are based on the recommendation approaches for individual users introduced
in Chapter 1. We showed how related group recommendation scenarios can be de-
signed for collaborative filtering, content-based filtering, constraint-based includ-
ing utility-based recommendation, critiquing-based, and hybrid recommendation.
In this context, we focused on a discussion of the two aggregation strategies: (1)
aggregated predictions (items) and (2) aggregated models. In (1), recommendations
are determined for individual group members and then aggregated. In (2), the pref-
erences of group members are aggregated, and recommendations are then deter-
mined on the basis of information contained in the integrated group profile. An
issue already solved in a couple of person-2-person recommendation environments
is which algorithms can be used to find a person that fits another person with regard
to a set of predefined criteria. An online dating application is reported, for example,
in [61]. Another application is the identification of experts to support the answering
of specific questions [48]. A related issue, especially relevant in the context of group
decision making, is group synthesis, i.e., the identification of a group that is able to
solve a specific problem or to make a decision. Initial work on group synthesis in
the context of open innovation scenarios can be found in [7, 31]. A major criteria
is to identify a group that is able to solve a given (decision) task, taking into ac-
count availability aspects such as engagement in other projects. This scenario can
become even more complex if we want to configure a set of groups to solve a spe-
cific task. Consider the following university-based task: Given that there are 300 stu-
dents registered in a software engineering course, divide the population into groups
of 6, such that each group is best suited to complete a specific project. A related
issue is the analysis of inter-group influences, for example, in which way influential
groups influence susceptible groups [54]. Further research issues are related to the
topics of evaluating group recommenders, explaining group recommendations, tak-
ing into account group dynamics, and counteracting biases that trigger suboptimal
decisions. These issues will be discussed in the following chapters of this book.

References

1. K. Arrow. The Difficulty in the Concept of Social Welfare. Journal of Political Economy,
58(4):328–346, 1950.

2. L. Baltrunas, T. Makcinskas, and F. Ricci. Group Recommendations with Rank Aggregation
and Collaborative Filtering. In 4th ACM Conference on Recommender Systems, pages 119–
126, Barcelona, Spain, 2010.

3. S. Berkovsky and J. Freyne. Group-based Recipe Recommendations: Analysis of Data Ag-
gregation Strategies. In 4th ACM Conference on Recommender Systems, pages 111–118,
Barcelona, Spain, 2010.

4. S. Berkovsky, J. Freyne, M. Coombe, and D. Bhandari. Recommender Algorithms in Activity
Motivating Games. ACM Conference on Recommender Systems (RecSys’10), pages 175–182,
2010.

5. L. Boratto and S. Carta. The Rating Prediction Task in a Group Recommender System that Au-
tomatically Detects Groups: Architectures, Algorithms, and Performance Evaluation. Journal
of Intelligent Information Systems, 45(2):221–245, 2015.

6. L. Boratto, S. Carta, and G. Fenu. Investigating the Role of the Rating Prediction Task in
Granularity-based Group Recommender Systems and Big Data Scenarios. Information Sci-
ences, 378:424–443, 2017.

7. M. Brocco and G. Groh. Team Recommendation in Open Innovation Networks. In ACM
Conference on Recommender Systems (RecSys’09), pages 365–368, NY, USA, 2009.

8. R. Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-Adapted Interaction (UMUAI), 12(4):331–370, 2002.

9. L. Chen, G. Chen, and F. Wang. Recommender Systems Based on User Reviews: the State of
the Art. User Modeling and User-Adapted Interaction, 25(2):99–154, 2015.

10. L. Chen and P. Pu. Critiquing-based Recommenders: Survey and Emerging Trends. User
Modeling and User-Adapted Interaction (UMUAI), 22(1–2):125–150, 2012.

11. Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to Computational
Social Choice. In 33rd conference on Current Trends in Theory and Practice of Computer
Science, pages 51–69, Harrachov, Czech Republic, 2007.

12. K. Christakopoulou, F. Radlinski, and K. Hofmann. Towards Conversational Recommender
Systems. In International Conference on Knowledge Discovery and Data Mining (KDD
2016), pages 815–824, San Francisco, CA, USA, 2016.

13. T. DePessemier, J. Dhondt, and L. Martens. Hybrid Group Recommendations for a Travel
Service. Multimedia Tools and Applications, 76(2):2787–2811, 2017.

14. T. DePessemier, J. Dhondt, K. Vanhecke, and L. Martens. TravelWithFriends: A Hybrid Group
Recommender System for Travel Destinations. In 9th ACM Conference on Recommender
Systems, Workshop on Tourism Recommender Systems, pages 51–60, 2015.

15. T. DePessemier, S. Dooms, and L. Martens. An Improved Data Aggregation Strategy for
Group Recommenders. In 3rd Workshop on Human Decision Making and Recommender
Systems (held in conjunction with the 7th ACM Conference on Recommender Systems), pages
36–39, Hong Kong, China, 2013.

16. T. DePessemier, S. Dooms, and L. Martens. Comparison of Group Recommendation Algo-
rithms. Multimedia Tools and Applications, 72(3):2497–2541, 2014.

17. M. Ekstrand, J. Riedl, and J. Konstan. Collaborative Filtering Recommender Systems. Foun-
dations and Trends in Human-Computer Interaction, 4(2):81–173, 2011.

18. A. Felfernig, M. Atas, T.N. Trang Tran, and M. Stettinger. Towards Group-based Configura-
tion. In International Workshop on Configuration 2016 (ConfWS’16), pages 69–72, 2016.

19. A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, and S. Polat-Erdeniz. An Analysis of
Group Recommendation Heuristics for High- and Low-Involvement Items. In International
Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems
(IEA/AIE 2017), pages 335–344, Arras, France, 2017.

20. A. Felfernig and R. Burke. Constraint-based Recommender Systems: Technologies and Re-
search Issues. In ACM International Conference on Electronic Commerce (ICEC08), pages
17–26, Innsbruck, Austria, 2008.

21. A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-based Diagnosis of
Configuration Knowledge Bases. Artificial Intelligence, 152(2):213–234, 2004.

22. A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, and S. Reiterer. Toward the Next Generation
of Recommender Systems. In Multimedia Services in Intelligent Environments: Recommen-
dation Services, pages 81–98. Springer, 2013.

23. A. Felfernig, M. Schubert, G. Friedrich, M. Mandl, M. Mairitsch, and E. Teppan. Plausible
Repairs for Inconsistent Requirements. In 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 791–796, Pasadena, CA, 2009.

24. A. Felfernig, M. Schubert, and S. Reiterer. Personalized Diagnosis for Over-Constrained
Problems. In 23rd International Conference on Artificial Intelligence (IJCAI 2013), pages
1990–1996, Peking, China, 2013.

25. A. Felfernig, M. Schubert, and C. Zehentner. An Efficient Diagnosis Algorithm for Inconsis-
tent Constraint Sets. Artificial Intelligence for Engineering Design, Analysis, and Manufac-
turing (AIEDAM), 26(1):53–62, 2012.

26. A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maalej, D. Pagano, L. Weninger, and
F. Reinfrank. Group Decision Support for Requirements Negotiation. Springer Lecture Notes
in Computer Science, 7138:105–116, 2011.

27. H. Garcia-Molina, G. Koutrika, and A. Parameswaran. Information Seeking: Convergence of
Search, Recommendations, and Advertising. Communications of the ACM, 54(11):121–130,
2011.

28. S. Ghazarian and M. Nematbakhsh. Enhancing Memory-based Collaborative Filtering for
Group Recommender Systems. Expert Systems with Applications, 42(7):3801–3812, 2015.

29. J. Guo, L. Sun, W. Li, and T. Yu. Applying Uncertainty Theory to Group Recommender
Systems Taking Account of Experts Preferences. Multimedia Tools and Applications, pages
1–18, 2017.

30. F. Guzzi, F. Ricci, and R. Burke. Interactive Multi-party Critiquing for Group Recommenda-
tion. In 5th ACM Conference on Recommender Systems, pages 265–268, Chicago, IL, USA,
2011.

31. S. Hong, C. Mao, Z. Yang, and H. Lai. A New Team Recommendation Model with Appli-
cations in Social Network. In 18th IEEE International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pages 644–648, NY, USA, 2014.

32. X. Hu, X. Meng, and L. Wang. SVD-based Group Recommendation Approaches: An Exper-
imental Study of Moviepilot. In ACM Recommender Systems 2011 Challenge on Context-
aware Movie Recommendation, pages 23–28, 2011.

33. A. Jameson. More than the Sum of its Members: Challenges for Group Recommender Sys-
tems. In International Working Conference on Advanced Visual Interfaces, pages 48–54, 2004.

34. A. Jameson, S. Baldes, and T. Kleinbauer. Two Methods for Enhancing Mutual Awareness
in a Group Recommender System. In ACM Intl. Working Conference on Advanced Visual
Interfaces, pages 447–449, Gallipoli, Italy, 2004.

35. A. Jameson and B. Smyth. Recommendation to Groups. In P. Brusilovsky, A. Kobsa, and
W. Nejdl, editors, The Adaptive Web, volume 4321 of Lecture Notes in Computer Science,
pages 596–627. 2007.

36. A. Jameson, M. Willemsen, A. Felfernig, M. de Gemmis, P. Lops, G. Semeraro, and L. Chen.
Human Decision Making and Recommender Systems. In F. Ricci, L. Rokach, and B. Shapira,
editors, Recommender Systems Handbook, 2nd Edition, pages 611–648. Springer, 2015.

37. M. Kompan and M. Bielikova. Group Recommendations: Survey and Perspectives. Comput-
ing and Informatics, 33(2):446–476, 2014.

38. J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl. GroupLens: Applying
Collaborative Filtering to Usenet News. Communications of the ACM, 40(3):77–87, 1997.

39. Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Sys-
tems. IEEE Computer, 42(8):30–37, 2009.

40. J. Levin and B. Nalebuff. An Introduction to Vote-Counting Schemes. Journal of Economic
Perspectives, 9(1):3–26, 1995.

41. G. Linden, B. Smith, and J. York. Amazon.com Recommendations – Item-to-Item Collabora-
tive Filtering. IEEE Internet Computing, 7(1):76–80, 2003.

42. T. Mahmood and F. Ricci. Improving Recommender Systems with Adaptive Conversational
Strategies. In 20th ACM Conference on Hypertext and Hypermedia, pages 73–82, Torino,
Italy, 2009.

43. J. Marquez and J. Ziegler. Preference Elicitation and Negotiation in a Group Recommender
Systems. In Interact 2015, volume 9297 of LNCS, pages 20–37. Springer, 2015.

44. J. Masthoff. Group Modeling: Selecting a Sequence of Television Items to Suit a Group of
Viewers. User Modeling and User-Adapted Interaction (UMUAI), 14(1):37–85, 2004.

45. J. Masthoff. Group Recommender Systems: Combining Individual Models. Recommender
Systems Handbook, pages 677–702, 2011.

46. J. Masthoff. Group Recommender Systems: Aggregation, Satisfaction and Group Attributes.
Recommender Systems Handbook, pages 743–776, 2015.

47. K. McCarthy, L. McGinty, B. Smyth, and M. Salamó. Social Interaction in the CATS Group
Recommender. In Workshop on the Social Navigation and Community based Adaptation
Technologies, 2006.

48. D. McDonald and M. Ackerman. Expertise Recommender: A Flexible Recommendation Sys-
tem and Architecture. In Conference on Computer Support Cooperative Work, pages 231–240,
Philadelphia, PA, USA, 2000.

49. T. Nguyen. Conversational Group Recommender Systems. In International Conference on
User Modelling, Adaptation and Personalization (UMAP’17), pages 331–334. ACM, 2017.

50. T. Nguyen and F. Ricci. A Chat-Based Group Recommender System for Tourism. In R.
Schegg and B. Stangl, editor, Information and Comm. Tech. in Tourism, pages 17–30. 2017.

51. F. Ortega, A. Hernando, J. Bobadilla, and J. H. Kang. Recommending Items to Group of Users
using Matrix Factorization based Collaborative Filtering. Information Sciences, 345(C):313–
324, 2016.

52. D. Pennock, E. Horvitz, and C. Giles. Social Choice Theory and Recommender Systems:
Analysis of the axiomatic foundations of collaborative filtering. In 17th National Conference
on Artificial Intelligence (AAAI), pages 729–734, Austin, TX, USA, 2000.

53. L. Quijano-Sánchez, D. Bridge, B. Dı́az-Agudo, and J. Recio-Garcı́a. A Case-Based Solution
to the Cold-Start Problem in Group Recommenders. In 23rd International Conference on
Artificial Intelligence (IJCAI 2013), pages 3042–3046, 2013.

54. L. Recalde. A Social Framework for Set Recommendation in Group Recommender Systems.
In European Conference on Information Retrieval, pages 735–743. Springer, 2017.

55. R. Reiter. A Theory of Diagnosis from First Principles. AI Journal, 32(1):57–95, 1987.
56. D. Sacharidis. Group Recommendations by Learning Rating Behavior. In International

Conference on User Modelling, Adaptation and Personalization (UMAP’17), pages 174–182.
ACM, 2017.

57. C. Senot, D. Kostadinov, M. Bouzid, Gerome Picault, A. Aghasaryan, and C. Bernier. Analysis
of Strategies for Building Group Profiles. In Conference on User Modeling, Adaptation, and
Personalization (UMAP 2010), volume 6075 of LNCS, pages 40–51, Big Island, Hawaii, USA,
2010.

58. C. Senot, D. Kostadinov, M. Bouzid, J. Picault, and A. Aghasaryan. Evaluation of Group
Profiling Strategies. In IJCAI 2011, pages 2728–2733, 2011.

59. M. Stettinger and A. Felfernig. CHOICLA: Intelligent Decision Support for Groups of Users in
Context of Personnel Decisions. In ACM RecSys’2014 IntRS Workshop, pages 28–32, Foster
City, CA, USA, 2014.

60. D. Winterfeldt and W. Edwards. Decision Analysis and Behavioral Research. Cambridge
University Press, 1986.

61. W. Wobcke, A. Krzywicki, Y. Kim, X. Cai, M. Bain, P. Compton, and A. Mahidadia. A
Deployed People-to-People Recommender System in Online Dating. AI Magazine, 36(3):5–
18, 2015.

62. Z. Yu, X. Zhou, Y. Hao, and J. Gu. TV Program Recommendation for Multiple Viewers based
on User Profile Merging. User Modeling and User-Adapted Interaction, 16(1):63–82, 2006.

