
Towards Group-Based Configuration
Alexander Felfernig1 and Müslüm Atas1 and Thi Ngoc Trang Tran1 and Martin Stettinger1

Abstract. Group-based configuration is a new configuration ap-
proach that supports scenarios in which a group of users is in charge
of configuring a product or service. In this paper, we introduce a def-
inition of a group-based configuration task and a corresponding so-
lution. Furthermore, we show how inconsistent situations in group-
based configuration can be resolved to achieve consensus within the
group. We introduce these concepts on the basis of a working exam-
ple from the domain of (group-based) software release planning.

1 Introduction
Configuration [1, 16] is considered as one of the most successful ap-
plications of Artificial Intelligence technologies. It is applied in many
domains such as financial services [2], telecommunication [5], and
the furniture industry [7]. Configuration environments are typically
single-user oriented, i.e., the underlying assumption is that a specific
user is in charge of completing the configuration task. However, con-
sidering configuration as a single user task can lead to suboptimal
decisions [4]. For example, release planning is a task that typically
requires the engagement of a group of stakeholders where the knowl-
edge and preferences of all stakeholders should be taken into account
in order to be able to achieve high-quality decisions [4, 6].

There are various scenarios where configuration decisions are not
taken by a single person but by a group of users [3]. As mentioned,
Software Release Planning [4] is a requirements engineering related
task, where groups of users (stakeholders) are deciding about the or-
dering in which requirements should be implemented. In this sce-
nario, stakeholders have different preferences and knowledge regard-
ing the implementation alternatives. Consequently, requirements-
related knowledge should be exchanged as much as possible and
existing contradictions in preferences and evaluations have to be re-
solved. Holiday Planning [8] is another scenario where a group is
in charge of identifying a configuration that is accepted by all group
members – examples of related decisions are region to visit, hotel,
and activities during the stay. Product Line Scoping [14] is related to
the task of determining boundaries in a product line. This task is a
specific type of requirements engineering task and related decisions
are crucial for the success of a whole product line effort. Investment
Decisions (e.g., project funding) [3] are often taken by a group of
users who have to take into account constraints with regard to the
overall amount of money that can be invested and the topics projects
should deal with. The overall configuration task in this context is to
identify a bundle of project proposals that takes into account the fi-
nancial limits and includes high-quality proposals.

Existing configuration environments do not take into account the
aspect of group configuration [3]. In contrast, for non-configurable
items such as movies, restaurants, personnel decisions, and music,

1 Graz University of Technology, Austria, email:
{alexander.felfernig,muatas,ttrang,mstettinger}@ist.tugraz.at

there already exist proposals how to support related group decision
processes [11, 12, 15]. In this context, group recommendation heuris-
tics [12] are applied to support groups in their decision making ac-
tivities. In order to achieve consensus, different decision heuristics
are applied which propose decisions acceptable for a group as a
whole. For example, the least misery heuristic proposes alternatives
which do not represent an absolute no-go for at least one of the group
members. Besides decision heuristics, standard recommendation ap-
proaches [9] such as matrix factorization can be applied to predict
recommendations acceptable for a group as whole. These approaches
rely on existing group recommendations. Based on such information
about group selection behavior, corresponding recommendations can
be determined for similar groups.

In this paper, we focus on introducing a formal definition of a
group configuration problem and show how inconsistencies in the
preferences of group members can be resolved.2 The remainder of
this paper is organized as follows. In Section 2 we introduce a ba-
sic definition of a group-based configuration task and introduce a
corresponding example configuration knowledge base. In Section 3
we discuss approaches that can help to resolve inconsistencies in the
preferences of individual group members. In Section 4 we discuss
further issues for future work. With Section 5 we conclude the paper.

2 Group-Based Configuration

In the following, we introduce definitions of a group configuration
task and a corresponding solution. These definitions are based on a
Constraint Satisfaction Problem (CSP) [17] which is frequently used
for the definition of (single user) configuration tasks. The major char-
acteristic of group-based configuration compared to other types of
group decision tasks is that the alternatives are defined in terms of a
knowledge base, i.e., the alternatives are not pre-specified. This re-
quires new approaches to configuration and diagnosis search, and to
represent the configuration task in a corresponding user interface.

Definition 1: Group-based Configuration Task. A group-based
configuration task can be defined as a CSP (V ,D,C) where V is a set
of variables, D represents the corresponding domain definitions, and
C = PREF ∪ CKB represents a set of constraints. In this context,
PREF =

⋃
PREFi is the union of customer preferences PREFi

and CKB represents a configuration knowledge base.3

Definition 2: Group-based Configuration. A group-based config-
uration (solution) for a group-based configuration task is a complete
set of assignments CONF =

⋃
ai : vi = vai to the variables vi ∈ V

such that CONF ∪ PREF ∪ CKB is consistent.

2 The work presented in this paper has been developed within the scope of the
WEWANT project (Enabling Technologies for Group-based Configuration)
which is funded by the Austrian Research Promotion Agency (850702).

3 We denote customer requirements as preferences (PREFS) in order to
distinguish these from software requirements in the working example.



Example 1: Group-based Configuration Task. For demonstration
purposes, we introduce a simplified group-based configuration task
from the domain of software release planning. The goal of software
release planning is to assign to each software requirement a corre-
sponding release. In this example, 9 requirements are represented in
terms of variables V = req1, req2, .., req9 and releases are repre-
sented as variable domains. If we assume that three releases have
been planned for completing the whole software (i.e., implementing
each individual requirement), each variable has a corresponding do-
main [1 .. 3], e.g., dom(r1) = [1 .. 3]. For the purpose of this example,
we assume the existence of three stakeholders who are in charge of
release planning – PREFi represents the preferences of stakeholder
i.

The following is a complete specification of a group-based config-
uration task. In this task, the individual user requirements PREFi
are consistent, i.e., a corresponding solution (software release plan)
can be identified.4 The configuration knowledge base CKB includes
additional constraints that describe dependencies between different
software requirements reqi, for example, req1 > req5 denotes the
fact that requirement req1 must be implemented for req5, i.e., there
is a dependency between these requirements. Furthermore, the re-
quirements req3 and req4 must not be implemented in the same re-
lease (e.g., due to resource constraints).

• V = {req1, .., req9}
• D = {dom(req1) = [1 .. 3], .., dom(req9 = [1 .. 3])}
• PREF1 = {pref11 : req1 = 1, pref12 : req2 = 1, pref13 :

req3 = 1, pref14 : req5 = 2, pref15 : req8 = 3}
• PREF2 = {pref21 : req3 = 1, pref22 : req4 = 2, pref23 :

req6 = 3, pref24 : req7 = 3}
• PREF3 = {pref31 : req5 = 2, pref32 : req6 = 3, pref33 :

req8 = 3, pref34 : req9 = 2}
• CKB = {c1 : req1 < req5, c2 : req2 < req8, c3 : req3 <

req6, c4 : req3 6= req4}

Example 2: Group-based Configuration. On the basis of the ex-
ample group-based configuration task, a constraint solver could de-
termine the following solution: CONF = {a1 : req1 = 1, a2 :
req2 = 1, a3 : req3 = 1, a4 : req4 = 2, a5 : req5 = 2, a6 :
req6 = 3, a7 : req7 = 3, a8 : req8 = 3, a9 : req9 = 2}. For each
requirement, the constraint solver proposes a corresponding release
in the context of which the requirement should be implemented.

3 Resolving Inconsistencies in Group Preferences
In the example introduced in Section 2, the basic assumption is that
the preferences of individual group members are consistent. How-
ever, in group-based configuration scenarios it happens quite often
that the preferences of individual users differ. In the context of re-
lease planning scenarios, it is often the case that stakeholders have
different preferences regarding the implementation of specific re-
quirements. One requirement could be favored due to the fact that
the corresponding functionalities are needed by the stakeholder. An-
other reason could be that a stakeholder has no preferences or sim-
ply does not understand the requirement in detail. Inconsistencies
between preferences can be manually resolved by showing inconsis-
tent preferences to stakeholders and let them decide which changes
should be performed. In such scenarios, minimal conflict sets are de-
termined [10] and conflict resolution is performed by users in a man-
ual fashion.
4 In Section 3 we discuss approaches to deal with inconsistencies.

Alternatively, conflicts between requirements can be resolved au-
tomatically by calculating minimal diagnoses (Definition 4) for min-
imal conflict sets (Definition 3).

Definition 3: Conflict Set. A conflict set CS ⊆
⋃

REQi is a min-
imal set of requirements such that inconsistent(CS). CS is minimal
if there does not exist a conflict set CS′ with CS′ is a conflict set
and CS′ ⊂ CS.

Minimal conflict sets can be exploited for determining the corre-
sponding diagnoses [13]. Assuming that

⋃
PREFi ∪ CKB is in-

consistent, a minimal diagnosis (Definition 4) represents a minimal
set of requirements that have to be deleted from

⋃
PREFi such that

a solution can be found for the remaining constraints (see Definition
4).

Definition 4: Group-based Configuration Diagnosis Task. A
group-based configuration diagnosis task is defined by a group-based
configuration task (V,D,C = PREF ∪ CKB) where PREF ∪
CKB is inconsistent.

Definition 5: Group-based Configuration Diagnosis. A diagnosis
for a given group-based configuration task (V,D,C = PREF ∪
CKB) is a set ∆ such that CKB ∪ PREF −∆ is consistent. ∆ is
minimal if ¬∃∆′: ∆′ ⊆ ∆.

Example 3: Group-based Configuration Diagnosis Task. An ex-
ample group-based configuration task that includes inconsistencies
between different user requirements is the following.

• V = {req1, .., req9}
• D = {dom(req1) = [1 .. 3], .., dom(req9) = [1 .. 3]}
• PREF1 = {pref11 : req1 = 2, pref12 : req2 = 1, pref13 :

req3 = 1, pref14 : req5 = 2, pref15 : req8 = 3}
• PREF2 = {pref21 : req3 = 2, pref22 : req4 = 3, pref23 :

req6 = 3, pref24 : req7 = 3}
• PREF3 = {pref31 : req5 = 2, pref32 : req6 = 3, pref33 :

req8 = 3, pref34 : req9 = 2}
• CKB = {c1 : req2 > req1, c2 : req2 < req8, c3 : req3 <

req6, c4 : req3 6= req4}

In this example, the requirements of the first stakeholder are incon-
sistent since the combination req1 = 2 and req2 = 1 is inconsistent
with the underlying knowledge base (req2 > req1). Furthermore,
there exists an inconsistency between the requirements req3 = 1
(stakeholder 1) and req3 = 2 (stakeholder 2).

The minimal conflict sets that can be derived from our work-
ing example are the following: CS1 = {pref11, pref12} and
CS2 = {pref13, pref21}. The corresponding set of alternative di-
agnoses (hitting sets) is the following: ∆1 = {pref11, pref13},
∆2 = {pref11, pref21}, ∆3 = {pref12, pref13}, and ∆4 =
{pref12, pref21}. A diagnosis is a minimal set of requirements from⋃

PREFi such that CKB ∪ PREF −∆ is consistent.
Diagnoses represent a set of consistency-preserving delete oper-

ations that can be applied to the set
⋃

PREFi in the case that
PREF ∪ CKB is inconsistent. In many cases, there exist differ-
ent diagnoses that can be recommended for preserving the consis-
tency between user requirements and the configuration knowledge
base (CKB). A ranking of alternative diagnoses in the context of
group configuration scenarios can be achieved, for example, by de-
termining a candidate set of minimal diagnoses that is then ranked
on the basis of different types of group decision heuristics [12].

An example of the application of such group decision heuristics
will be discussed in the following. Table 1 depicts a situation where
individual user requirements are inconsistent. In order to resolve this
inconsistency, the alternative diagnoses ∆1,∆2,∆3, and ∆4 can be
applied. An open question in this context is which of the alternative



stake-
holder

req1 req2 req3 req4 req5 req6 req7 req8 req9

1
pref11 :
req1 = 2

pref12 :
req2 = 1

pref13 :
req3 = 1

pref14 :
req5 = 2

pref15 :
req8 = 3

2
pref21 :
req3 = 2

pref22 :
req4 = 3

pref23 :
req6 = 3

pref24 :
req7 = 3

3
pref31 :
req5 = 2

pref32 :
req6 = 3

pref33 :
req8 = 3

pref34 :
req9 = 2

Table 1. Tabular representation of constraints in an example group-based configuration task. Conflict set CS1 = {pref11, pref12} reflects inconsistent
preferences of stakeholder 1 (the preferences are inconsistent with the configuration knowledge base) and conflict set CS2 = {pref13, pref21} reflects a

conflict between the preferences of stakeholders 1 and 2.

diagnoses should be recommended first to the group of users – Table
2 summarizes the impact of the different diagnoses on the current
preferences of stakeholders (users). For this purpose, different group
decision heuristics can be applied that help to figure out alternatives
acceptable for the whole group.

In the following, we exemplify three basic heuristics and show
how these can influence the selection of a diagnosis. First, the least
misery heuristic prefers alternatives (in our case diagnoses) that min-
imize the misery of individual users (see Formula 1 – prefδ(s,∆)
denotes the number of preferences that have to be changed by user
s in the context of diagnosis ∆). In our scenario, least misery for
a whole group would reflect the minimum of the maximum num-
ber of preferences part of a diagnosis, i.e., the lower the least misery
value the better the corresponding diagnosis. For example, if diagno-
sis ∆2 is recommended, user 1 would have to adapt two of his/her
requirements and user 2 would have to adapt zero. Diagnosis ∆2 has
a lower misery value since the maximum number of requirements
to be adapted is 1. Obviously, user 3 is in the situation of not be-
ing affected by any of the diagnosis candidates. Second, the average
heuristic prefers alternatives with the lowest average deviation from
the original preferences (see Formula 2). Finally, the most pleasure
heuristic prefers alternatives with the best outcome for one user (see
Formula 3). For example, in Table 1 the most pleasure value of all di-
agnoses ∆i is 0.0 since for user 3 there does not exist a need to adapt
his/her preferences in all of the diagnoses. For a detailed discussion
of group decision heuristics we refer to [12].

leastmisery(∆) = argmaxd
⋃

s∈users

prefδ(s,∆) = d (1)

average(∆) =
Σs∈usersprefδ(s,∆)

#users
(2)

mostpleasure(∆) = argmind
⋃

s∈users

prefδ(s,∆) = d (3)

stakeholder ∆1 =
{r11, r13}

∆2 =
{r11, r21}

∆3 =
{r12, r13}

∆4 =
{r12, r21}

1 2 1 2 1
2 0 1 0 1
3 0 0 0 0

Table 2. Overview of the impact of the different diagnoses ∆i on the
current preferences of stakeholders, for example, stakeholder 1 has to change

two of his/her requirements if diagnosis ∆1 gets selected.

heuristic ∆1 =
{r11, r13}

∆2 =
{r11, r21}

∆3 =
{r12, r13}

∆4 =
{r12, r21}

least misery 2.0 1.0 2.0 1.0
average 0.67 0.67 0.67 0.67

most
pleasure 0.0 0.0 0.0 0.0

Table 3. Evaluation of the different diagnoses using the least misery,
average, and the most pleasure heuristic. In all three heuristics the ranking

criteria for the diagnoses is less is better.

4 Future Work
The major goal of this paper is to present our initial ideas related
to the implementation of group-based configuration technologies.
There are a couple of issues to be solved within the scope of future
work - these issues will be discussed in the following paragraphs.

Consensus in Group Decision Making. Presenting diagnoses in sit-
uations where user preferences are inconsistent with the underlying
configuration knowledge base and/or the preferences of other users is
a basic means to trigger discussions and achieve consensus [4]. How-
ever, further aspects have to be taken into account in order to be able
to accelerate the achievement of consensus in group decision mak-
ing. Approaches that are promising in this context are, for example,
the following. User interfaces have to be enriched in order to allow
basic negotiation mechanisms between users. An example thereof is
the following: stakeholder A is interested in having implemented re-
quirement reqa as soon as possible. Furthermore, stakeholder B is
interested in having implemented requirement reqb as soon as pos-
sible. Stakeholder A would accept an earlier implementation of reqb
if stakeholder B accepts an earlier implementation of requirement
reqa. In this context, visualization concepts for the representation
of the current decision situation will play a major role – alternative
ways to represent decision situations are a focus of future work.

Fairness in Group Decision Making. An important issue in group
decision making is fairness with regard to group members. Fairness
is especially a topic within the scope of repeated decision processes
where the same or similar groups are taking a decision. A related ex-
ample is holiday decisions where a group of friends decides about a
new travel destination and related activities. The preferences of users
who were discriminated to some extent in previous year’s travel ar-
rangements should have a higher emphasis in the new holiday deci-
sion. Fairness also includes visualization aspects since the visualiza-
tion of the current state of the decision process could help to increase
fairness in group decision making, for example, by increasingly tak-
ing into account the preferences of other group members.

Predictive Search. Based on the information about already com-
pleted group decision processes, diagnosis and repair could be im-



proved by better predicting alternatives acceptable for the whole
group. In this context, different types of personalization approaches
should be included that help to take into account the preferences of
the whole group when determining diagnoses and corresponding re-
pair actions. Diagnosis prediction approaches for single users are
already discussed in related work [1], however, in group decision
scenarios further related aspects have to be taken into account. The
prediction of a relevant diagnosis does not only have to take into ac-
count the selection behavior of users but also how users interacted
with each other within the scope of a group decision process. Fur-
thermore, the search for alternative configurations has to take into
account group preferences, i.e., search heuristics must be learned on
the basis of past group interactions.

Negotiation Mechanisms. The main challenge of negotiation
mechanisms is to include these in a way that is easy to understand
for users. Complex negotiation mechanisms will not be accepted by
end-users, i.e., the major challenge is to propose decision and nego-
tiation mechanisms that help to achieve high-quality decisions and
consensus as soon as possible and to trigger inconsistency manage-
ment only in situations where real disagreements exists. For example,
if one stakeholder evaluates the risk level of a requirement with 7 (on
a scale [1..10]) and the other stakeholder evaluates the same require-
ment with 8, there seems to be no real disagreement and the system
may not have to point out an existing inconsistency.

Intelligent User Interfaces. Since group-based configuration tasks
are solved in a distributed and asynchronous fashion, user interfaces
should be able to take into account this situation. Figure 1 includes
a screenshot of the CHOICLA group decision support environment
[15].5 In its current version, the system supports group decisions re-
lated to non-configurable products and services (e.g., party locations
and type of dinner), i.e., decisions are taken with regard to a collected
assortment of alternatives but are not taken with regard to certain at-
tributes (variables) which are basic elements of a configuration task.
In the current version of CHOICLA, the only possibility of taking
decisions regarding configurable products is to enumerate a repre-
sentative set of alternatives (e.g. new family car). In future versions
of CHOICLA, we will support the integration of complete configura-
tion tasks into decision processes. Variables will then be represented
as alternatives and user preferences and inconsistencies will be rep-
resented on a corresponding graphical level.

5 Conclusions

In this paper, we introduced the concept of group-based configura-
tion. We introduced a basic definition of a group-based configuration
task (represented as a constraint satisfaction problem) and showed
how to deal with inconsistent preferences of group members on the
basis of the concepts of model-based diagnosis. In this context, we
showed how to integrate different types of decision heuristics into
diagnosis selection processes. Finally, we discussed different chal-
lenges for future work we want to tackle.

REFERENCES
[1] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based

Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

[2] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, ‘The VITA Financial
Services Sales Support Environment’, in AAAI/IAAI 2007, pp. 1692–
1699, Vancouver, Canada, (2007).

5 www.choicla.com.

Figure 1. CHOICLA group decision support environment. Each entry
represents a group decision task – the corresponding percentages indicate the

share of users who already articulated their requirements. A red circle
indicates the fact that the current user did not articulate his/her preferences.

[3] A. Felfernig, M. Stettinger, G. Ninaus, M. Jeran, S. Reiterer, A. Falkner,
G. Leitner, and J. Tiihonen, ‘Towards open configuration’, in 16th Intl
Workshop on Configuration, pp. 89–94, Novi Sad, Serbia, (2014).

[4] A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maaleij,
D. Pagano, L. Weninger, and F. Reinfrank, ‘Group Decision Support for
Requirements Negotiation’, in Advances in User Modeling, Springer
Verlag, volume 7138 of LNCS, pp. 105–116, (2012).

[5] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 13(4), 59–
68, (1998).

[6] T. Greitemeyer and S. Schulz-Hardt, ‘Preference-consistent evaluation
of information in the hidden profile paradigm: Beyond group-level
explanations for the dominance of shared information in group deci-
sions.’, Jrnl of Personality & Soc Psychology 84(2), 332–339, (2003).

[7] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems, 13(4), 78–85, (1998).

[8] A. Jameson, S. Baldes, and T. Kleinbauer, ‘Two methods for enhancing
mutual awareness in a group recommender system’, in ACM Intl. Work-
ing Conf. on Advanced Vis. Interf., pp. 48–54, Gallipoli, Italy, (2004).

[9] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems – An Introduction, Cambridge University Press, 2010.

[10] U. Junker, ‘QuickXPlain: Preferred Explanations and Relaxations
for Over-Constrained Problems’, in 19th National Conference on AI
(AAAI04), pp. 167–172, San Jose, CA, (2004).

[11] J. Masthoff, ‘Group modeling: Selecting a sequence of television items
to suit a group of viewers’, UMUAI, 14(1), 37–85, (2004).

[12] J. Masthoff, ‘Group recommender systems’, Recommender Systems
Handbook, 677–702, (2011).

[13] R. Reiter, ‘A theory of diagnosis from first principles’, AI Journal,
23(1), 57–95, (1987).

[14] K. Schmid, ‘Scoping software product lines’, in Software Product Lines
– Experience and Research Directions, pp. 513–532, (2000).

[15] M. Stettinger, ‘Choicla: Towards domain-independent decision support
for groups of users’, in 8th ACM Conference on Recommender Systems,
pp. 425–428, (2014).

[16] M. Stumptner, ‘An overview of knowledge-based configuration’,
AICOM, 10(2), 111–125, (1997).

[17] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
London, 1993.


