
Solving Over-Constrained Problems using Network Analysis

Monika Schubert

Applied Software Engineering, IST
Graz University of Technology

Graz, Austria
monika.schubert@ist.tugraz.at

Alexander Felfernig

Applied Software Engineering, IST
Graz University of Technology

Graz, Austria
alexander.felfernig@ist.tugraz.at

Monika Mandl

Applied Software Engineering, IST
Graz University of Technology

Graz, Austria
monika.mandl@ist.tugraz.at

Abstract—Requirements for which no recommendation can
be calculated are unsatisfactory for the user. The detection
and resolution of conflicts between those requirements and the
product assortment is an important functionality to successfully
guide the user to a solution. In this paper we introduce a
new approach how to identify minimal conflict sets in over
constrained problems through network analysis. Conflict sets
offer the information which constraints (requirements) need
to be changed to retrieve a solution. Random constrained
problems are used to evaluate our approach and compare it
to existing conflict detection algorithms. A major result of this
evaluation is that our approach is superior in settings typical
for knowledge-based recommendation problems.

Keywords-Recommender Systems; Explanations; CSP

I. INTRODUCTION

Knowledge-based recommender systems are a special

class of recommender systems, that support the identifica-

tion of interesting items based on user requirements and

knowledge about the items [1], [2]. In order to receive

a recommendation from a knowledge-based recommender

system, the user has to enter a set of requirements (con-

straints). The system then determines those items that satisfy

the given set of user requirements. If these constraints can

not be fulfilled, the system needs to calculate explanations

[2], [4], [9] that indicate minimal sets of changes such that

a recommendation can be found. Existing approaches to

handle these changes focus on low-cardinality diagnoses [5],

[6] or on high-cardinality fulfilled subqueries [7].

In this paper we present a new method to identify a

minimal set of constraints that need to be changed in order

to correct a set of unsatisfyable requirements. This approach

focuses on an efficient calculation of n minimal conflict

sets - where n is an integer number between 1 and the

maximum amount of minimal conflict sets - using methods

from network analysis [10]. These sets can be further used

to identify the best suited repair action for the user [4].

This paper is organised as follows. First, we introduce

a motivating example, which will be used throughout the

paper to explain the algorithm described in Section III.

After the description of the algorithm based on concepts

of the network analysis, we evaluate our approach including

a comparison to QuickXplain [6] the standard algorithm for

Table I
WORKING EXAMPLE

P1 P2 P3 P4 P5 P6 P7 P8

Price 600 700 1200 1000 1100 1150 800 1200
Weight 2.2 2.6 3.2 2.3 2.5 3.0 2.6 3.3

Size 8.9 15.4 17 10 15.4 12 15.4 13
RAM 1 2 3 4 2 4 3 4

Hard Drive 80 120 150 200 180 300 120 400
OS included yes yes yes no yes no no yes

the calculation of minimal conflict sets. In section V we

discuss related work and conclude the paper.

II. WORKING EXAMPLE

For demonstration purposes we introduce an example

that will be used for further explanations. This example

comes from the field of recommender systems and deals

with retrieving laptops for specific requirements. Table I

shows the products of our working example (P1, ..., P8)

including a specification of their properties (e.g., price). We

want to retrieve one laptop with the following requirements:

r1: price < 750, r2: weight ≤ 2.5, r3: size ≥ 15.4, r4:
RAM > 2 and r5: OS included = yes. The products are

normally stored in one or more database tables (Table I is

an example for a simple database table). In order to receive

a recommendation we create a conjuntive query that is sent

as a request to the database. The conjunctive query for the

user requirements r1 to r5 would be: SELECT * FROM
WorkingExapmple WHERE price < 750 AND weight ≤
2.5 AND size ≥ 15.4 AND RAM > 2 AND OS included
= yes. When requesting this query we can easily see that

the returning result set is empty - there is no product that

satisfies all these requirements (constraints).

III. APPROACH

Our approach is based on the analysis of a network con-

sisting of constraints (requirements) and items (products).

The basis for our algorithm is a specific type of constraint

satisfaction problem (CSP). Such a CSP consists of a set

of constraints C = {r1, r2, ..., rm} and a set of items

I = {p1, p2, ..., pn}. Each item pi ∈ I has a set of possible

values Di from its domain. Such a CSP is satisfiable (it has

a solution) if there exists at least one item from I that fulfills

2009 International Conference on Adaptive and Intelligent Systems

978-0-7695-3827-3/09 $25.00 © 2009 IEEE
DOI 10.1109/ICAIS.2009.12

9

Figure 1. Graph connecting the requirements (constraints)

all constraints in C. If a CSP is over-constrained it has no

solution i.e., there does not exist an item that fulfills all the

constraints in C.

A. Constraints as a Network of Items

The main core of a CSP are the constraints. Studying

the structure of these constraints can bring more insight to

the solution of the CSP. Every CSP in the above sense can

be represented as an adjacency matrix represented by the

dimensions constraints (requirements) and items (products)

(see, e.g., Table II).

Table II
ADJACENCY MATRIX OF CONSTRAINTS AND ITEMS

P1 P2 P3 P4 P5 P6 P7 P8

Price 1 1 0 0 0 0 0 0
Weight 1 0 0 1 1 0 0 0

Size 0 1 1 0 1 0 1 0
RAM 0 0 1 1 0 1 1 1

OS included 1 1 1 0 1 0 0 1

Every time an item fulfils a constraint the value in the

matrix is set to 1 (if not the value is 0). This adjacency matrix

can also be seen as a two-mode network (also referred as

affiliation network) of items I which are associated with the

constraints C. One way to analyse such a two-mode network

is to project (or fold) [10] it into a one-mode network

of one of the two possible amplitudes. For analysing the

structure of the constraints we project the adjacency matrix

M to a constraint network C* = MT M . This network C*

contains information about the structure of the constraints

and allows to analyse their relationships. Figure 1 shows our

constraint network of the working example. The constraints

are stored in nodes. The information which product satisfies

the constraints is stored in the edges. Whenever a product

satisfies two constraints an edge is connecting these two

constraints. How this can be used for the identification of

conflicts is explained in the next section.

Figure 2. Pruned graph connecting the requirements (constraints) after
removing all minimal conflict sets with cardinality ≤ 3

B. Identification of Conflicts

A graph consisting of nodes that represent constraints

can be used to identify minimal conflict sets. If there is

a constraint not satisfied by any item, then this is a minimal

conflict set as well (conflict set with cardinality 1). Such a

constraint can be identified by calculating the sum of each

row of the adjacency matrix (meaning each constraint). If

the sum of a row is zero than this constraint is not satisfied

by any item and thus a minimal conflict set. Note that no

such constraint exists in our working example.

In order to identify the conflicts in constraint networks

with cardinality 2, we are looking for missing edges in the

constraint graph. If there is no edge between two constraints,

it means that there is no product that can satisfy these two

constraints. Therefore at least one of these constraints needs

a relaxation in order to find a solution.

In order to be able to apply this step of the algorithm to

our working example, we have to check whether there is any

edge missing (compared to a fully connected graph) in the

graph. We see, for example, that an edge connecting R1-R4

is missing. Consequently we have found a minimal conflict

set {r1, r4}.

After the identification and extraction of all minimal

conflict sets caused by the missing edges (conflict sets of
cardinality 2), we continue with the next step. We analyse

all fully connected subgraphs. If in a subgraph not all edges

have a common label for at least one item (product) pi, this

subgraph represents a conflict set. This property is based

on the simple fact that there is no item that satisfies all

connected constraints.

Let us assume the first fully connected subgraph retrieved

from our working example is R1-R2-R3. The intersection of

the labels of the edges connecting this subgraph is empty and

thus we found another minimal conflict set. Note that R1-R2-
R4 is not a fully connected subgraph and therefore we don’t

have to deal with it ({r1, r4} is already a minimal conflict

set). Applying this method to all subgraphes with 3 nodes

10

we identify the minimal conflict sets CSi ∈ MCS: CS1 =
{r1, r2, r3}, CS2 = {r2, r3, r4} and CS3 = {r2, r4, r5}.

Note that the edges of triangle R1-R2-R5 have the item P1 in

common, the edges R2-R3-R5 have the item P5 in common

and finally, the edges of R3-R4-R5 have item P3 in common.

All minimal conflict sets can be removed, which leaves us

with a pruned graph shown in Figure 2. In this graph we only

take into account the labels of the common items because

the other labels do not contain any useful information.

The pruned graph of our working example does not have

any further fully connected subgraphs with a cardinality

> 3. Consequently we have completed the calculation of

all minimal conflict sets that exist in our working example.

The algorithm for calculating the minimal conflict sets

using a graph based approach is the following (Algorithm

1 - NA). The input value is an adjacency matrix M which

holds the satisfaction of each item for every constraint (see,

e.g., Table II). From this matrix we retrieve all constraints

that are not satisfied by any item (retrieveSingleNodes). All

these constraints are minimal conflict sets and thus stored

in the list of minimal conflict sets MCS. In the next step we

project the two-mode adjacency matrix into a constraint-

mode graph G (see Section III-A). All possible edges which

are not in the graph are calculated by retrieveMissingEdges
and are stored in the list of minimal conflict sets MCS. Thus

all minimal conflict sets of cardinality 2 have been identified.

For all subgraphs with increasing cardinality (starting with
cardinality 3) we take the first one (with subgraphs.next) and

check whether this subgraph SG has a common label on all

edges. If it does not then we found a minimal conflict set

which is added to MCS. If this subgraph SG is a minimal

conflict set then it can be excluded from further investi-

gations. At this point there are different implementation

possibilities: either all subgraphs are hold in a list and the

super sets of the minimal conflict graphs are removed or

all subgraphs for one cardinality are calculated and after

checking each individual, the graph is rebuild excluding the

current minimal conflict sets (see, e.g., Figure 2). In our

implementation we chose alternative one with removing all

supersets.

IV. EVALUATION

We are now going to discuss in the runtime of our algo-

rithm for different applications with different characteristics.

In this context we compare our network analysis approach

with the QuickXplain [6] from Junker. We implemented both

algorithms in Java 1.6, all experiments were performed on a

normal desktop PC where all products (items) are stored in a

SQL database. The consistency check is done through send-

ing conjunctive queries to the database. The QuickXplain

[6] algorithm is based on a recursive divide-and-conquer

strategy, which calculates one conflict set at a time. To make

this approach comparable to our NA algorithm (Algorithm

1), which calculates all minimal conflict sets for a CSP, we

Algorithm 1 NA (M)

{Input: M - adjacency matrix of constraints and items}
MCS ← retrieveSingleNodes(M)
G ← MT M
MCS ← MCS ∪ retrieveMissingEdges(G)
for all subgraphs do

SG ← subgraphs.next
if notHasCommonEdge(SG) then

MCS ← MCS ∪ {edges(SG)}
subgraphs.adjust(SG)
{to ensure to only retrieve minimal conflict sets}

end if
end for
return MCS

{Output: return MCS including all minimal conflict sets}

used the HSDAG (Hitting Set Directed Acylic Graph) by

Reiter [8] to build up a tree with all minimal conflict sets.

A. Influence of the Number of Items

First we studied the influence of the number of items on

the runtime. Therefore we generated applications with 10

constraints and an increasing number of items. The number

of items is distributed on a logarithmic scale in order to

study the influence on a wide spectrum. Both algorithms,

our network analysis based approach and QuickXplain [6]

started with 100 items and went up to 1600.

In the first test we set the satisfaction of the items to 50%

which means that the probability that a constraint is fulfilled

by an item is 50%. This provides us with a high variant of

different cardinalities of minimal conflict sets. This test was

performed 30 times and the mean values of the runtime are

plotted in Figure 3. The plot shows that up to 200 items

the NA algorithm (Algorithm 1) performs better than the

QuickXplain. The continuous increase of the runtime of the

NA algorithm can be explained by the folding procedure

(see Section III-A).

In comparison to this observation we performed another

test with a satisfaction rate of 40%. From the plot of both

algorithms (Figure 4) we can see that up to more than

800 items the network analysis approach outperforms the

QuickXplain [6]. An interesting observation is the fact, that

the QuickXplain [6] performs even better with a higher

number of items. The runtime of the QuickXplain algorithm

is linear dependent on the number of minimal conflict sets

due to a higher amount of calls of the theorem prover for

more minimal conflict sets. This amount of minimal conflict

sets decreases with a higher number of items. This holds

especially for a higher satisfaction rate as this indicates the

probability that an item satisfies one constraint which could

eliminate the constraint from the minimal conflict set.

11

Figure 3. Runtime comparison of the algorithms QuickXplain and
Network-Analysis for increasing amount of items and a fixed amount of
10 constraints and a satisfaction rate of 50%

Figure 4. Runtime comparison of the algorithms QuickXplain and
Network-Analysis for increasing amount of items and a fixed amount of
10 constraints and a satisfaction rate of 40%

B. Influence of the Number of Constraints

To study not only the influence of the number of items to

our algorithm (Algorithm 1) we evaluated our approach with

different number of constraints. We started with 6 constraints

and went up to 14. For all these settings we used 500 items

to be comparable. Figure 5 shows that for up to 8 constraints

the runtime is so low that there is nearly no difference

between the algorithms. This fact was already discussed in

the Section IV-A. With more than 10 constraints the NA

algorithm (Algorithm 1) outperforms the QuickXplain [6].

For 14 constraints the QuickXplain [6] needs around 75

seconds, whereas the network based approach needs less

than 5 seconds.

Summarizing, for typical knowledge-based recommen-

dation settings our proposed network analysis algorithm

(Algorithm 1) is the better choice since the cardinality of

a set of customer requirements could include 10-20 items

and a typical product assortment (e.g., in the financial

Figure 5. Runtime comparison of the algorithms QuickXplain and
Network-Analysis for an increasing amount of constraints and a fixed
amount of 500 items (satisfaction rate: 50%)

services domain) includes 50-250 items.1 Especially for a

high number of requirements - up to 20 - that occure in

more complex settings the performance of the QuickXplain

[6] algorithm is weak compared to our approach (Algorithm

1).

C. Dependency on Satisfaction Rate

As a further exploration of the feasibility of calculating

minimal conflict sets with the network based approach (Al-

gorithm 1) we extracted the runtime for different satisfaction

rates. The satisfaction rate represents the probability of a

constraint of being satisfied by an item. This satisfaction

rate has a high impact on the cardinality and the number

of minimal conflict sets. If an algorithm performs well on

a wide spectrum of satisfaction rates, than it can be used

without knowing much about the actual problem.

To have representative and comparable settings we used

a set of 500 items and 10 constraints with a satisfaction rate

r between 10% and 70%. We stopped at r = 70% because

it is hard to find a setting with a satisfaction rate greater

than 70% and still having an over-constraint problem. The

satisfaction of each item-constraint relation is set randomly.

Each algorithm calculated the minimal conflict sets of 30

different applications. Figure 6 shows the mean value of

the runtimes (30 applications) for r = 10%, 20%, ..., 70%.

From this figure we can identify, that the NA algorithm

(Algorithm 1) has a low average runtime over the different

satisfaction rates. The increase of the runtime depending

on a larger r is based on the larger search space (less

minimal conflict sets can be excluded in an early phase of

the algorithm). In contrast to this the QuickXplain [6] has

a weak performance on a low satisfaction rate, meaning a

1We assumed a satisfaction rate per query of about 40-50% which occurs
in the financial services domain [3] – clearly further (product domain-
specific) evaluations have to be conducted in this context.

12

Figure 6. Runtime comparison of the algorithms QuickXplain and
Network-Analysis for different satisfaction rates, 10 constraints and 500
items

Figure 7. Runtime comparison of the algorithms QuickXplain and
Network-Analysis for different satisfaction rates calculating one minimal
conflict set

high number of minimal conflict sets with a low cardinality.

But on the other hand the QuickXplain [6] performs well

for a high satisfaction rate.

D. Calculation of one and more MCS

In applications like [4] not all minimal conflict sets are

needed. Thus we compared the runtime for the calculation of

one minimal conflict set of our Network Analysis algorithm

(Algorithm 1) and QuickXplain [6]. We compared these

results for a set of different satisfaction rates representing

characteristics of different applications. We performed a

test for each satisfaction rate 30 times and calculated the

corresponding average value. A lower satisfaction rate re-

sults in a smaller cardinality of the minimal conflict set.

Up to a satisfaction rate of 40% the Network Analysis

algorithm performs better than the QuickXplain. For a more

dense set of data the Network Analysis algorithm needs a

lot of calculations to check for minimal conflict sets with

a low cardinality. The results of the performance test for

calculating one minimal conflict set is plotted in Figure 7.

In some applications it is neither necessary to calculate

one, nor all minimal conflict sets. For an increasing number

Figure 8. Plot of the runtime of the Network-Analysis for a different
amount of minimal conflict set and an increasing number of constraints

of constraints we compared the runtime of the calculation

from one up to ten minimal conflicts sets. These tests were

performed with 30 runs with 1000 items and an increasing

number of constraints (from 6 up to 20). The results of the

Network Analysis algorithm (Algorithm 1) can be seen in

Figure 8 and the results of the QuickXplain [6] are plotted

in Figure 9. Calculating one minimal conflict set using

the QuickXplain [6] algorithm is quite fast, but calculating

two minimal conflicts increases the runtime with a factor

4.75 when using 20 constraints. In general we identfy from

Figure 9 that the runtime of the QuickXplain algorithm

is more dependent on the amount of constraints than on

the number of minimal conflict sets that are calculated (if

more than one minimal conflict set is calculated). In contrast

to this the Network Analysis algorithm (Algorithm 1) is

dependent on the size of the minimal conflict set. That is

the reason why Figure 8 looks a bit clumsy. Anyway we can

identify an increasing runtime dependent on the number of

constraints as well as on the number of minimal conflicts sets

that are calculated. Comparing the two algorithms between

each other, the Network Analysis algorithm (Algorithm 1)

performs faster on an average. Especially for settings with 12

constraints and above and calculating more than one minimal

conflict set the Network Analysis algorithm (Algorithm 1)

outperforms the QuickXplain [6] algorithm.

V. RELATED WORK

The work of [2] includes concepts for the automated

detection of minimal sets of inconsistent requirements on

the basis of Model-Based Diagnosis (MBD) [8]. Those

diagnoses are calculated by deriving hitting sets on the

basis of conflict resolution. The conflicts exploited in [2]

are not necessarily minimal which enlarges the underlying

13

Figure 9. Plot of the runtime of the QuickXplain for a different amount
of minimal conflict set and an increasing number of constraints

hitting set acyclic directed graph (HSDAG). In [9] such

minimal sets (diagnoses) are denoted as exclusion sets, in the

work of McSherry (see, e.g., [7]) the complement of such a

minimal set is denoted as maximally successful sub-query.

An efficient algorithm for the determination of minimal

conflict sets has been introduced by [6] (QuickXPlain)

– in this paper we have compared the performance of

QuickXPlain with our network-based algorithm. The major

contribution of our paper is a novel approach that is faster in

typical recommender system settings for calculating minimal

conflict sets, which can be used as a basis for calculating

diagnoses and corresponding repair actions.

VI. CONCLUSION

In this paper we introduced a method how to identify

all minimal conflict sets for an over-constrained satisfaction

problem. The identification of these minimal conflict sets

is extremly important in a knowledge-based recommender

system to provide a customer with repair actions for unre-

alisable requirements (constraints). Thus we came up with

an algorithm inspired by common techniques of the network

analysis, which performs well and even faster than the state-

of-the-art algorithms. The results of the evaluation clearly

demonstrate the improvements induced by our algorithm.

ACKNOWLEDGMENT

The work presented in this paper has been developed

within the scope of the research projects WECARE (funded

by the Austrian Research Agency FFG) and Softnet Aus-

tria that is funded by the Austrian Federal Ministry of

Economics (bm:wa), the province of Styria, the Steirische

Wirtschaftsfoerderungsgesellschaft mbH (SFG), and the city

of Vienna in terms of the center for innovation and technol-

ogy (ZIT).

REFERENCES

[1] R. Burke, Knowledge-based recommender systems, in ’Library
and Information Systems’, vol. 69 (32) New York: Marcel
Dekker, 2000, pp. 180-200.

[2] A. Felfernig, G. Friedrich, D. Jannach and M. Stumpt-
ner, Consistency-based Diagnosis of Configuration Knowledge
Bases, in Artificial Intelligence, vol. 152 (2), Essex, UK, 2004,
pp. 213-234.

[3] A. Felfernig, K. Isak, K. Szabo, P. Zachar, The VITA Financial
Services Sales Support Environment, AAAI/IAAI, Vancouver,
Canada, 2007, pp. 1692-1699.

[4] A. Felfernig, M. Schubert, G. Friedrich, M. Mandl, M. Mair-
itsch and E. Teppan, Plausible Repairs for Inconsistent Re-
quirements, in ’Proceedings of the 21st International Joint
Conference on Artificial Intelligence’, Pasadena, California,
2009, pp. 791-796

[5] D. Jannach, Finding Preferred Query Relaxations in Content-
based Recommenders, in ’Intelligent Techniques and Tools
for Novel System Architectures’, vol. 109, Springer Berlin /
Heidelberg, 2008, pp. 81-97.

[6] U. Junker, QUICKXPLAIN: Preferred Explanations and Re-
laxations for Over-Constrained Problems, in ’Proceedings of
the 19th National Conference on Artificial Intelligence’, The
AAAI Press, California, 2004, pp. 167-172.

[7] D. McSherry, Retrieval Failure and Recovery in Recommender
Systems, in Artificial Intelligence Review, vol. 24, Norwell,
USA, 2005, pp. 319-338.

[8] R. Reiter, A theory of diagnosis from first principles, in
Artificial Intelligence, vol. 32(1), Essex, UK, 1987, pp. 57-95.

[9] B. OSullivan, A. Papadopoulos, B. Faltings and P. Pu, Repre-
sentative Explanations for Over-Constrained problems, in Pro-
ceedings of the National Conference on Artificial Intelligence,
2007, pp. 323-328.

[10] S. Wassermann and K. Faust, Social Network Analysis, Cam-
bridge University Press, Cambridge, 1994.

14

